Автор: Пользователь скрыл имя, 07 Декабря 2010 в 13:59, доклад
Никель (лат. Niccolum), Ni, химический элемент первой триады VIII группы периодической системы Менделеева, атомный номер 28, атомная масса 58,70; серебристо-белый металл, ковкий и пластичный. Природный Н. состоит из смеси пяти стабильных изотопов: 58Ni (67,76%), 60Ni (26,16%), 61Ni (1,25%), 63Ni (3,66%), 64Ni (1,16%).
Никель (лат. Niccolum), Ni, химический элемент первой триады VIII группы периодической системы Менделеева, атомный номер 28, атомная масса 58,70; серебристо-белый металл, ковкий и пластичный. Природный Н. состоит из смеси пяти стабильных изотопов: 58Ni (67,76%), 60Ni (26,16%), 61Ni (1,25%), 63Ni (3,66%), 64Ni (1,16%).
Историческая
справка. Металл в нечистом
виде впервые получил в 1751 шведский
химик А. Кронстедт,
Распространение
в природе. Н. — элемент
Физические
и химические свойства. При обычных
условиях Н. существует в виде
b-модификации, имеющей
Н. —
ковкий и тягучий металл, из
него можно изготовлять
В химическом
отношении Ni сходен с Fe и Со,
но также и с Cu и благородными
металлами. В соединениях
С азотом Н. не реагирует даже при высоких температурах (до 1400 °С). Растворимость азота в твёрдом Н. приблизительно 0,07% по массе (при 445 °С). Нитрид Ni3N может быть получен пропусканием NH3 над NiF2, NiBr2 или порошком металла при 445 °С. Под действием паров фосфора при высокой температуре образуется фосфид Ni3P2 в виде серой массы. В системе Ni — As установлено существование трёх арсенидов: Ni5As2, Ni3As (минерал маухерит) и NiAs. Структурой никель-арсенидного типа (в которой атомы As образуют плотнейшую гексагональную упаковку, все октаэдрические пустоты которой заняты атомами Ni) обладают многие металлиды. Неустойчивый карбид Ni3C может быть получен медленным (сотни часов) науглероживанием (цементацией) порошка Н. в атмосфере CO при 300 °С. В жидком состоянии Н. растворяет заметное количество С, выпадающего при охлаждении в виде графита. При выделении графита Н. теряет ковкость и способность обрабатываться давлением.
В ряду
напряжений Ni стоит правее Fe (их нормальные
потенциалы соответственно —0,
При взаимодействии
с кислотами образуются соли 2-валентного
Ni. Почти все соли Ni (II) и сильных
кислот хорошо растворимы в
воде, растворы их вследствие
гидролиза имеют кислую
При повышенных
температурах Н.
Получение. Около 80% Н. от общего его производства (без СССР) получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Н. в сульфидный расплав (штейн), содержащий 10—15% Ni. Обычно электроплавке (основной метод плавки в СССР) предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Сu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni — файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu, и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового Н. отливают аноды и рафинируют электролитически. Содержание примесей в электролитном Н. (марка 110) 0,01%.
Для разделения Cu и Ni используют также т. н. карбонильный процесс, основанный на обратимости реакции:
Получение карбонила
проводят при 100—200 атм и при 200—250
°С, а его разложение — без
доступа воздуха при
В современных «автогенных» процессах плавка осуществляется за счёт тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO2, пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Всё более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно Н. переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением).
Из силикатных
(окисленных) руд Н. также может
быть сконцентрирован в штейне
при введении в шихту плавки
флюсов — гипса или пирита.
Восстановительно-
Применение.
Подавляющая часть Ni используется
для получения сплавов с др.
металлами (Fe, Сг, Cu и др.), отличающихся
высокими механическими,
Значительное количество Н. расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий Н. в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Н. — весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.
Переработка
руд Н. сопровождается
А. В. Ванюков.
Никель в организме является необходимым микроэлементом. Среднее содержание его в растениях 5,0·10-5% на сырое вещество, в организме наземных животных 1,0×10-5%, в морских — 1,6×10-5%. В животном организме Н. обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Физиологическая роль Н. изучена недостаточно. Установлено, что Н. активирует фермент аргиназу, влияет на окислительные процессы; у растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и др.). На обогащенных Н. почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений — уродливые формы, у животных — заболевания глаз, связанные с повышенным накоплением Н. в роговице: кератиты, кератоконъюнктивиты).
И. Ф. Грибовская.
Лит.: Рипан Р., Четяну И., Неорганическая химия, т. 2 — Металлы, пер. с рум., М., 1972, с. 581—614; Справочник металлурга по цветным металлам, т. 2 — Цветные металлы, М., 1947 (Металлургия никеля, с. 269—392); Войнар А. И., Биологическая роль микроэлементов в организме животных и человека, 2 изд., М., 1960; Биологическая роль микроэлементов и их применение в сельском хозяйстве и медицине, т. 1—2, Л., 1970
[править] Применение
Основная доля выплавляемого никеля расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36—38 % никеля, обладает удивительно низким коэффициентом термического расширения (это — так называемый сплав инвар (сплав)), и его применяют при изготовлении ответственных деталей различных приборов.
При изготовлении сердечникиов электромагнитов широкое применение находят сплавы под общим названием пермаллои. Эти сплавы, кроме железа, содержат от 40 до 80 % никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят из хрома (10—30 %) и никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.