Неорганическая химия

Автор: Пользователь скрыл имя, 23 Декабря 2011 в 17:03, реферат

Описание работы

Электролитами называются вещества, которые в расплавленном или растворенном состоянии проводят электрический ток. Теорию электролитической диссоциации разработал Сванте Аррениус. Предложенная им теория объяснила поведение и многие свойства электролитов. Согласно этой теории молекулы электролита в воде или другой среде, характеризующейся большой диэлектрической проницаемостью, распадаются на ионы – положительные (катионы) и отрицательные (анионы) Процесс распада вещества на ионы получил название электролитической диссоциации.

Содержание

1.Виды растворов. Причины образования водных растворов. 4.
2.Силы Ван-дер-Ваальса "ориентационные, индукционные,
дисперсионные ". Водородная связь. 8.
3.Электролиты. Сильные электролиты, кристаллогидраты. 12.
4. Водородный показатель 14.
.
5. Гидролиз солей. Типы гидролиза 15.
6. Значение растворов электролитов в химии, биологии и геохимии. 20.
Список литературы

Работа содержит 1 файл

Реферат по неорганической химии.doc

— 154.00 Кб (Скачать)

     Полный  гидролиз.

     Для полного протекания гидролиза нужно, чтобы соль была образована очень  слабой кислотой и очень слабым основанием. Кроме того, желательно, чтобы один из продуктов гидролиза, уходил из сферы реакции в виде газа. (Малорастворимые вещества, остающиеся в контакте с раствором, вообще говоря, не уходят из сферы реакции, поскольку все равно, сколько то растворимы.) Поэтому полному гидролизу подвергаются обычно соли газообразных или неустойчивых кислот: сероводородной, угольной, отчасти сернистой. К ним примыкают вещества, которые в обычном понимании уже не являются солями: нитриды, фосфиды, карбиды, ацетилениды, бориды.

     Если  вернуться к обычным солям, то полностью гидролизующиеся соли (карбонаты, сульфиды алюминия, хрома(III), железа(III)) нельзя получить реакциями обмена в водных растворах. Вместо ожидаемых продуктов в результате реакции мы получим продукты гидролиза. Гидролиз осложняет протекание многих других реакций обмена. Так, при взаимодействии карбоната натрия с сульфатом меди в осадок обычно выпадает основной карбонат меди (CuOH)2CO3.

     В таблице растворимости для полностью  гидролизующихся солей стоит  прочерк. Однако прочерк может стоять по другим причинам: вещество не изучено, разлагается в ходе окислительно-восстановительной реакции, и т.п. Некоторые прочерки в таблице растворимости вызывают удивление. Так. сульфид бария хорошо известен и растворим (как и сульфиды других щелочноземельных металлов). Гидролиз этих солей протекает только по аниону. 

     Типы  солей.

     Гидролиз  соли - это реакция, обратная реакции  нейтрализации. Поэтому каждую соль можно представить себе как соединение, образованное основанием и кислотой. Кислоты и основания бывают сильными или слабыми электролитами. В зависимости от силы исходной кислоты и исходного основания различают четыре типа солей:

• образованные сильным основанием и слабой кислотой;

• образованные слабым основанием и сильной кислотой;

• образованные слабым основанием и слабой кислотой;

• образованные сильным основанием и сильной  кислотой. 

Соли, образованные сильным основанием и слабой кислотой. 

В водном растворе цианида калия соль полностью  распадается на ионы калия К+ и цианид-ионы CN-. Ионы калия К+ и гидроксид-ионы ОН- могут находиться в растворе одновременно в значительных количествах. Ионы водорода Н+ и цианид-ионы CN- взаимодействуют между собой с образованием циановодородной кислоты. Этот процесс схематически может быть представлен следующим образом:

KCN -> К+ + CN-

Н2О + CN- = ОН- + НCN

В результате гидролиза  такой соли в растворе находятся полностью продиссоциированная щелочь и слабо диссоциированная кислота. Эта кислота частично диссоциирует на ионы и возвращает в раствор часть ионов Н+ и CN-. Возникает обратная реакция и устанавливается динамическое химическое равновесие:

К+ + CN- + Н2О = К+ + ОН- + HCN.

Следовательно, реакция между цианидом калия  и водой является обратимой и проходит не полностью. Такое явление называется обратимым гидролизом.

В результате того, что в растворе образуется сильный электролит гидроксид калия, концентрация гидроксид-ионов  ОН- будет значительно больше концентрации ионов водорода Н+. В растворе соли возникает щелочная среда, т.е. рН > 7. Действительно, эксперимент показывает, что 0,1 М раствор этой соли имеет рН 11,1. Гидролиз цианида калия в сокращенной ионной форме можно представить уравнением

CN- + Н2О = ОН- + HCN.

Подобно раствору KCN, раствор ацетата натрия также имеет щелочную среду, что видно из молекулярного и сокращенного ионного уравнений гидролиза:

CHgCOONa + Н2О = СН3СООН + NaOH; СН3СОО- + Н2О = СН3СООН + ОН-.

Сокращенное ионное уравнение показывает, что гидролиз соли, образованной сильным основанием и слабой кислотой, идет по аниону слабой кислоты и реакция среды становится щелочной. 

Соли, образованные слабым основанием и сильной  кислотой. 

Примером такой  соли является йодид аммония NH4I. При растворении этой соли в воде катион аммония связывает гидроксид-ион ОН- воды, а ионы водорода накапливаются в растворе:

NH4I + Н2О = NH4OH + HI; NH4+ + Н2О = NH4OH + H+.

В результате гидролиза  данной соли в растворе, образуются слабое основание NH4OH и сильная кислота HI. Йодоводородная кислота является сильным электролитом и в водном растворе полностью распадается на ионы. Концентрация ионов водорода становится значительно больше, чем концентрация гидроксид-ионов, и раствор соли имеет кислую среду, т.е рН 7.

Такой же процесс  происходит и в случае растворения  хлорида аммония NH4C1 в воде:

NH4C1 + Н2О = NH4OH + HC1 или NH4+ + Н2О = NH4OH + H+.

Таким образом, гидролиз соли, образованной слабым основанием и сильной кислотой, идет по катиону  слабого основания и реакция  среды становится кислой. 

Соли, образованные слабым основанием и слабой кислотой. 

В случае гидролиза солей, образованных слабым основанием и слабой кислотой, оба иона ОН- и Н+ воды связываются. Образуются слабая кислота и слабое основание. CH3COONH4 -> СН3СОО- + NH4+

СН3СОО- + NH4+ +H2O = CH3COOH + СН3СОО- + NH4+

Гидролиз соли идет одновременно и по катиону, и по аниону. В зависимости от константы диссоциации продуктов гидролиза (кислоты и основания) реакция среды растворов таких солей может быть слабокислой, слабощелочной или нейтральной. Например, реакция среды в случае гидролиза ацетата аммония CH3COONH4 — нейтральная, поскольку константы диссоциации СН3СООН и NH4OH равны. В случае же гидролиза соли цианида аммония NH4CN реакция среды слабощелочная.

Таким образом, гидролиз соли, образованной слабым основанием и слабой кислотой, идет одновременно и по катиону, и по аниону. Реакция среды зависит от констант диссоциации продуктов гидролиза. 

Соли, образованные сильным  основанием и сильной  кислотой. 

Соли этого  типа гидролизу не подвергаются, потому что катионы и анионы этих солей не связываются с ионами Н+ и ОН- воды и в растворе не образуются молекулы слабых электролитов. Поскольку связывания ионов воды не происходит, реакция среды растворов этих солей остается нейтральной. Рассмотрим это на примере раствора хлорида натрия. Взаимодействие этой соли с водой можно представить уравнениями

NaCl + Н2О = NaOH + HC1 или Na++ С1- + Н2О = Na+ + ОН- + Н+ + С1-.

Производя сокращения в ионном уравнении, получаем Н2О = Н+ + ОН-. Отсюда видно, что ионы соли не участвуют в реакций и среда остается нейтральной.

Следовательно, соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются, а реакция среды остается нейтральной. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Значение  растворов электролитов в химии, биологии, геохимии. 

     Что же дало радиационной химии изучение радиолиза воды и водных растворов? Оно позволило создать общее представление о радиолизе чистых веществ и смесей различных веществ, о видах радиационно-химических реакций в растворах, о путях повышения и понижения выходов радиолитических превращений. Зная механизм радиолиза воды, легче изучать механизмы радиолиза других веществ, так как многие закономерности радиационно-химических превращений имеют общий характер. 

     Используя полученные данные о механизме радиолиза  водных растворов, химики смогли разобраться в радиационно-химических превращениях веществ, используемых для очистки и разделения радиоактивных изотопов и ядерного горючего, и разработать методы, устраняющие опасность появления больших количеств горючего газа при облучении воды в ядерном реакторе.

       Другое важное следствие касается  радиационной биологии. Организмы  - это (конечно, лишь с химической  точки зрения) концентрированные  водные растворы органических  и неорганических веществ. Следовательно,  происходящие в организмах процессы в организмах процессы подчиняются общим закономерностям радиолиза водных растворов, знание которых облегчает биологам выяснение механизма биологических нарушений в организме при облучении. 
 
 
 
 
 
 
 
 

Литература. 

  1. Робинсон  Р., Стокс Р. Растворы электролитов. М., 1963 Измайлов А.А. Электрохимия растворов. М., 1976
  2. Термодинамика и строение растворов. Материалы симпозиума "Химия водных систем при высоких температурах и давлениях", Иваново, 1986; March N.H., Тоsi M. P., Coulomb liquids, L.-[a.o.], 1984;
  3. Глинка Н.Л. Общая химия. – М.: Химия, 1978. – С. 228-260.
  4. Шиманович И.Е., Павлович М.Л., Тикавый В.Ф., Малашко П.М. Общая химия в формулах определениях, схемах. – Мн.: Унiверсiтэцкае, 1996. – С. 121-136.
  5. Воробьев В.К., Елисеев С.Ю., Врублевский А.В. Практические и самостоятельные работы по химии. – Мн.: УП «Донарит», 2005. – С. 52-65.

Информация о работе Неорганическая химия