Лекции по "Материаловедению"

Автор: Пользователь скрыл имя, 24 Декабря 2012 в 12:26, курс лекций

Описание работы

Материаловедение - научная дисциплина о структуре, свойствах и назначении материалов.
Свойства технических материалов формируются в процессе их изготовления. При одинаковом химическом составе, но разной технологии изготовления, образуется разная структура, и вследствие, свойства.
Цель настоящей дисциплины - изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике.
Основная задача дисциплины - установить зависимость между составом, строением и свойствами, изучить термическую, химико-термическую обработку и другие способы упрочнения, сформировать знания о свойствах основных разновидностей материалов.

Работа содержит 1 файл

Конспект материаловедение (металлы ЛКМ).doc

— 997.00 Кб (Скачать)

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен  способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании  Р составляют 5…500 гс

 

 

Метод царапания. 

 

Алмазным конусом, пирамидой или  шариком наносится царапина, которая  является мерой. При нанесении царапин  на другие материалы и сравнении  их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину. 

 

Динамический метод (по Шору) 

 

Шарик бросают на поверхность с  заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных  образцов с надрезом (ГОСТ 9454) оценивается  вязкость материалов и устанавливается  их склонность к переходу из вязкого состояния в хрупкое.

Вязкость – способность материала  поглощать механическую энергию  внешних сил за счет пластической деформации.

Является энергетической характеристикой  материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения). 

 

Влияние температуры. 

 

С повышением температуры вязкость увеличивается (см. рис. 7. 2).

Предел текучести Sт существенно изменяется с изменением температуры, а сопротивление отрыву Sот не зависит от температуры. При температуре выше Тв предел текучести меньще сопротивления отрыву. При нагружении сначала имеет место пластическое деформирование, а потом – разрушение. Металл находится в вязком состоянии.

Прт температуре ниже Тн сопротивление отрыву меньше предела текучести. В этом случае металл разрушается без предварительной деформации, то есть находится в хрупком состоянии. Переход из вязкого состояния в хрупкое осуществляется в интервале температур

Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры.

Хладоломкими  являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную  кубическую и гексагональную плотноупакованную  кристаллическую решетку.

Рис. 7.2. Влияние температуры на пластичное и хрупкое состояние 

 

Способы оценки вязкости.  

 

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению

Испытание проводят на образцах с надрезами  определенной формы и размеров. Образец  устанавливают на опорах копра надрезом в сторону, противоположную удару  ножа маятника,который поднимают  на определенную высоту (рис. 7.3)

Рис.7.3. Схема испытания на ударную  вязкость: а – схема маятникового копра; б – стандартный образец с надрезом; в – виды концентраторов напряжений; г – зависимость вязкости от температуры

На разрушение образца затрачивается  работа:

где: Р – вес маятника, Н –  высота подъема маятника до удара, h – высота подъема маятника после удара.

Характеристикой вязкости является ударная вязкость (ан), - удельная работа разрушения.

где: F0 - площадь поперечного сечения в месте надреза.

ГОСТ 9454 – 78 ударную вязкость обозначает KCV. KCU. KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т) (рис. 7.3 в)

Серийные испытания для оценки склонности металла к хладоломкости и определения критических порогов хладоломкости.

Испытывают серию образцов при  различных температурах и строят кривые ударная вязкость – температура ( ан – Т) (рис. 7.3 г), определяя пороги хладоломкости.

Порог хладоломкости - температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности. Чем ниже порог хладоломкости, тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации. 

 

Оценка вязкости по виду излома. 

 

При вязком состоянии металла в  изломе более 90 % волокон, за верхний  порог хладоломкости Тв принимается температура, обеспечивающая такое состояние. При хрупком состоянии металла в изломе 10 % волокон, за нижний порог хладоломкости Тн принимается температура, обеспечивающая такое состояние. В технике за порог хладоломкости принимают температуру, при которой в изломе 50 % вязкой составляющей. Причем эта температура должна быть ниже температуры эксплуатации изделий не менее чем на 40oС.

Испытания на выностивость (ГОСТ 2860) дают характеристики усталостной прочности.

Усталость - разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.

Усталостная прочность – способность материала сопротивляться усталости.

Процесс усталости состоит из трех этапов, соответствующие этим этапам зоны в  изломе показаны на рис.7.4.

1 – образование трещины в наиболее нагруженной части сечения, которая подвергалась микродеформациям и получила максимальное упрочнение

2 – постепенное распространение  трецины, гладкая притертая поверхность

3 – окончательное разрушение, зона  “долома“, живое сечение уменьшается,а истинное напряжение увеличивается, пока не происходит разрушение хрупкое или вязкое 

 

Рис 7.4. Схема зарождения и развития трещины при переменном изгибе круглого образца 

 

Характеристики усталостной прочности  определяются при циклических испытаниях “изгиб при вращении“. Схема представлена на рис. 7.5.

Рис. 7.5. Испытания на усталость (а), кривая усталости (б) 

 

Основные характеристики:  

 

Предел выносливпсти ( – при симметричном изменении нагрузки, – при несимметричном изменении нагрузки) – максимальное напряжение, выдерживаемое материалом за произвольно большое число циклов нагружения N.

Ограниченный предел выносливости – максимальное напряжение, выдерживаемое материалом за определенное число циклов нагружения или время.

Живучесть – разность между числом циклов до полного разрушения и числом циклов до появления усталостной трещины. 

 

Технологические свойства  

 

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства.

Характеризуют способность материала  к получению из него качественных отливок.

Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.

Усадка (линейная и объемная) – характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.

Ликвация – неоднородность химического состава по объему.

2. Способность материала к обработке  давлением.

Это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.

Она контролируется в результате технологических  испытаний, проводимых в условиях, максимально приближенных к производственным.

Листовой материал испытывают на перегиб  и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.

Критерием годности материала является отсутствие дефектов после испытания.

3. Свариваемость.

Это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием.

Характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя. 

 

Эксплуатационные свойства  

 

Эксплуатационные свойства характеризуют  способность материала работать в конкретных условиях.

  1. Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
  2. Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.
  3. Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.
  4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.
  5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.
  6. Антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

 

Стали. Классификация  и маркировка сталей. 

 

Стали являются наиболее распространенными  материалами. Обладают хорошими технологическими свойствами. Изделия получают в результате обработки давлением и резанием.

Достоинством  является возможность, получать нужный комплекс свойств, изменяя состав и  вид обработки. Стали, подразделяют на углеродистые и легированные. 

 

Влияние углерода и примесей на свойства сталей 

 

Углеродистые стали являются основными. Их свойства определяются количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродом. 

 

Влияние углерода. 

 

С ростом содержания углерода в структуре  стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.

Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог  хладоломкости и снижает ударную  вязкость.

Повышаются  электросопротивление и коэрцитивная сила, снижаются магнитная проницаемость  и плотность магнитной индукции.

Углерод оказывает влияние и на технологические  свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением  и резанием, свариваемость. Следует  учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием. 

 

Влияние примесей. 

 

В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси: кремний, марганец, сера, фосфор.

Марганец  и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.

Содержание  марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.

Содержание  кремния не превышает 0,35…0,4 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, . Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке

Содержание  фосфора в стали 0,025…0,045 %. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести , но снижает пластичность и вязкость.

Располагаясь  вблизи зерен, увеличивает температуру  перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения  трещин, Повышение содержания фосфора  на каждую 0,01 % повышает порог хладоломкости на 20…25oС.

Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость.

Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.

S – уменьшается пластичность, свариваемость и коррозионная стойкость. Р–искажает кристаллическую решетку.

Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988oС. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости.

Красноломкость – повышение хрупкости при высоких температурах

Сера снижает механические свойства, особенно ударную вязкость а и пластичность ( и ), а так же предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.

2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.

Азот и кислород находятся в  стали в виде хрупких неметаллических  включений: окислов (FeO, SiO2, Al2O3 ) нитридов (Fe 2N), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).

Информация о работе Лекции по "Материаловедению"