Автор: Пользователь скрыл имя, 16 Января 2013 в 20:50, контрольная работа
Ртуть - удивительный химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды.
Введение………………………………………………………………………….
Ртуть и ее свойства
Физические свойства ртути
Химические свойства ртути
Область применения ртути
Заключение
Список литературы
Содержание
Введение…………………………………………………………
Заключение
Список литературы
Введение
Ртуть - удивительный химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах. Ртуть причастна к научным открытиям и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья.
Ртуть - редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оцениваются в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы (для сравнения - одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы). Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет 100 000 000 000 т (сто миллиардов тонн), из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах (в водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах - 0,03 мкг/л). Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.
Известно более 100 ртутных и ртутьсодержащих минералов. Основным минералом, определяющим промышленную значимость ртутных месторождений, является киноварь. Самородная ртуть, метациннабарит, ливингстонит и ртутьсодержащие блеклые руды имеют резко подчиненное значение и добываются попутно с киноварью.
Всего в мире обнаружено около 5000 ртутных месторождений, рудных участков и рудопроявлений, получивших самостоятельное название; из них в разное время разрабатывались около 500. Но за всю историю ртутной промышленности подавляющая часть ртути (более 80%) получена на 8 месторождениях: Альмаден (Испания), Идрия (Словения), Монте-Амиата (Италия), Уанкавелика (Перу), Нью-Альмаден и Нью-Идрия (США), Никитовка (Украина), Хайдаркан (Киргизия)[4].
Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в бокситах, некоторых глинах, горючих сланцах, известняках и доломитах, в углях, природном газе, нефти.
Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочке Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли». Процессы эти идут постоянно, но активизируются при извержениях вулканов, землетрясениях, геотермальных явлениях и т. п. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т в год.
В природных условиях ртуть обычно мигрирует в трех наиболее распространенных состояниях - Нg0 (элементарная ртуть), Нg2+ (ион двухвалентной ртути), СН3Нg+ (ион метилртути), а также в виде менее распространенного иона Нg22+ Химические соединения Hg(ll) встречаются в природе значительно чаще, нежели Hg(l). В водах между Нg0, Нg22+ и Нg2+ устанавливается равновесие, которое определяется окислительно-востановительным потенциалом раствора и концентрацией различных веществ, формирующих комплексы с Нg2+. Ионы Нg(II) образуют устойчивые комплексы с биологически важными молекулами. Именно высокое химическое сродство ртути (II) и ее метилированных соединений к биомолекулам в существенной мере определяет токсикологическую опасность ртути в условиях окружающей среды[5].
Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей, главным образом, из техногенных источников. Многие этапы локального круговорота еще недостаточно ясны, но полагают, что он включает циркуляцию в среде обитания диметилртути. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.
Поступающие в окружающую среду
из природных и техногенных
Неорганическая ртуть Hg2+ претерпевает два важных вида превращений в окружающей среде. Первый - это восстановление с образованием паров ртути. Этот процесс, являющийся ключевым в глобальном круговороте ртути, изучен плохо. Известно, что некоторые бактерии способны осуществлять это преобразование. Второй важной реакцией, которой подвергается Hg2+ в природе, является ее превращение в метил- и диметилпроизводные и их последующие взаимопревращения друг в друга. Эта реакция играет ключевую роль в локальном круговороте ртути. Важно то, что метилирование ртути происходит в самых различных условиях: в присутствии и отсутствии кислорода, разными бактериями, в различных водоемах, в почвах и даже в атмосферном воздухе. Особенно интенсивно процессы метилирования протекают в верхнем слое богатых органическим веществом донных отложений водоемов, во взвешенном в воде веществе, а также в слизи, покрывающей рыбу. Метилирование приводит к образованию монометил- и диметилртутных соединений. Монометилртуть (СН3-Hg+) , обычно говорят и пишут просто «метилртуть»), обладая, как уже говорилось, высоким сродством к биологическим молекулам, чрезвычайно активно накапливается живыми организмами. Факторы биоконцентрирования, т. е. отношения содержания метилртути втканяхрыб кее концентрации в воде, могут достигать 10000-100000. Диметилртуть (СН3)2Hg, отличаясь высокой растворимостью и испаряемостью, улетучивается из воды в атмосферу, где может превращаться в монометил ртуть, удаляться с дождевыми осадками и возвращаться в водоемы и в почву, завершая таким образом локальный круговорот ртути[3].
Типичные природные (фоновые) концентрации паров ртути в приземном слое в атмосферном воздухе обычно составляют 10-15 нг/м3 при колебаниях от 0,5-1 до 20-25 нг/м3. Видимо, именно такие содержания практически безопасны для живых организмов. В зонах загрязнения концентрации возрастают в десятки и сотни раз, а в производственных или загрязненных ртутью помещениях могут достигать экстремально высоких значений (до 1-5 мг/м3). Главной формой ртути в атмосфере являются пары металла (Нg0), меньшее значение имеют ионная форма, органические и неорганические (хлориды, йодиды) соединения. Она также связывается с аэрозолями. В зонах загрязнения концентрации ртути в дождевой воде достигают 0,3-0,5 мкг/л и даже более (при фоне обычно не больше 0,1 мкг/л). В городах наблюдается увеличение количества ртути, переносимой с аэрозолями и атмосферной пылью.
Фоновые уровни ртути в природных почвах зависят от их типа, но в большинстве случаев находятся в пределах 0,01-0,1 мг/кг. Нижние пределы характерны для песчаных почв, верхние - для почв, богатых органическим веществом. Содержания, превышающие эти величины, связаны с влиянием загрязнения. В зонах загрязнения уровни ртути, особенно в верхних горизонтах почв, увеличиваются в десятки-сотни раз, иногда даже в тысячи раз. В почвах ртуть активно аккумулируется гумусом, глинистыми частицами, может мигрировать вниз по почвенному профилю и поступать в грунтовые воды, поглощаться растительностью, в том числе сельскохозяйственной, а также выделяться в виде паров и в составе пыли в атмосферу. При сильном загрязнении почв концентрации ртути в воздухе могут достигать опасных для человека величин[1].
В поверхностных водах ртуть мигрирует в двух основных фазовых состояниях - в растворе вод (растворенные формы) и в составе взвеси (взвешенные формы). В свою очередь, в растворе вод она может находиться в виде двухвалентного иона, гидроксида ртути, комплексных соединений (с хлором, органическим веществом и др.). Среди соединений Нg (II), мы уже знаем об этом, по своему экологическому и токсикологическому значению особая роль принадлежит ртутьорганическим соединениям. Важнейшими аккумуляторами ртути, особенно в условиях загрязнения, являются взвесь и донные отложения водных объектов. Наиболее высокими концентрациями ртути характеризуются техногенные илы, активно накапливающиеся в реках и водоемах, куда поступают сточные воды промышленности. Уровни содержания ртути в них достигают 100-300 мг/кг и больше (при фоне до 0,1 мг/кг). Известны случаи, когда количество ртути, поступившей со сточными водами и накопившееся в таких илах, составляло десятки и сотни тонн. Нормальное функционирование таких рек и водоемов, их практическое использование возможно только при удалении загрязненных отложений. Использование загрязненных ртутью вод для орошения сельскохозяйственных угодий приводило к ее накоплению в сельхозпродукции до уровней, превышающих ПДК.
Типичные фоновые уровни валовой ртути (растворенные формы) в природных пресных водах составляют 0,03-0,07 мкг/л; в донных отложениях рек и пресноводных озер - 0,05-0,1 мг/кг; в пресноводных растениях -0,04-0,06 мг/кг сухой массы. Обычно там, где нет указаний на загрязнение ртутью, ее уровни в питьевых водах редко превышают 0,1 мкг/л. Ртуть, прежде всего метилртуть, относится к веществам, которые накапливаются в пищевой цепи, простым образцом которой может быть, например, следующий ряд: личинка - пескарь - окунь -щука - кошка. Это значит, что в каждом последующем организме содержание метилртути обычно многократно выше, нежели в предыдущем. Пищевые продукты, выращенные и полученные при соблюдении необходимых условий, обычно характеризуются допустимым содержанием ртути[2].
Ртуть (Нg) -химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59. Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20°С 13,54616 г/см3; температура плавления равна -38,89°С, кипения 357,25°С. При замерзании (-38,89°С) она становится твердой и легко поддается ковке.
Ртуть - серебристый металл, единственный из металлов, жидкий при обычной температуре. При комнатной температуре ртуть медленно испаряется, что создает опасность ртутного отравления, так как пары ртути ядовиты, не имеют запаха, цвета и способны накапливаться в организме. Поэтому сосуды с ртутью должны быть плотно закрыты. Ртуть в коллоидном состоянии получается при восстановлении нитрата ртути(I) нитратом олова(II). При встряхивании ртути с разными жидкостями или при смешении с жирами либо порошками ртуть образует с ними тонкую дисперсию, которая используется в медицине как серая ртутная мазь. Чистая ртуть не тускнеет на воздухе при обычной температуре, но при нагревании медленно окисляется кислородом, образуя оксид HgO. Ртуть не реагирует с разбавленной хлороводородной кислотой и с холодной концентрированной серной кислотой, но разбавленная азотная и горячая концентрированная серная кислоты растворяют ртуть, причем при избытке металла образуются соединения ртути(I), а если кислота находится в избытке, то получаются соединения ртути(II). Ртуть хорошо растворяет многие металлы и образует с ними соединения и сплавы, которые называются амальгамами. Обычно амальгамы образуются уже при простом контакте металлов со ртутью. Особенно легко образуется амальгама золота, из-за чего не следует допускать контакта золотых изделий со ртутью. Co, Ni и Pt не образуют амальгам, железо также не образует амальгамы, если находится в компактной форме, поэтому ртуть можно перевозить в стальных сосудах. Амальгамы ряда металлов очень важны, например, с помощью амальгам извлекают золото и серебро (драгоценные металлы) из их руд. Амальгамы олова, серебра и золота применяют для пломбирования зубов, амальгамы натрия и калия используют как восстановители. Амальгамирование цинковых электродов используют для уменьшения их коррозии в период консервации аккумуляторных батарей[3, 4, 5].