Автор: Пользователь скрыл имя, 09 Марта 2013 в 13:53, контрольная работа
1.Частный случай диссоциации.
2. Отличительные признаки окислительно-восстановительных реакций.
3. Комплексные соединения.
Аналитическая химия
Вариант № 26
Вопрос № 1.
Ответ:
Частным случаем диссоциации (процесса распада более крупных частиц вещества — молекул ионов или радикалов — на частицы меньшего размера) является электролитическая диссоциация, при которой нейтральные молекулы вещества, называемого электролитом, в растворе (в результате воздействия молекул полярного растворителя) распадаются на заряженные частицы: катионы и анионы. Этим объясняется способность растворов электролитов проводить ток.
Принято делить все электролиты на две группы: слабые и сильные. Вода относится к слабым электролитам, диссоциация воды характеризуется небольшим количеством диссоциированных молекул, так как они достаточно стойкие и практически не распадаются на ионы. Чистая (без примесей) вода слабо проводит электрический ток. Это обусловлено химической природой самой молекулы, когда положительно поляризованные атомы водорода внедрены в электронную оболочку сравнительно небольшого атома кислорода, который поляризован отрицательно.
Электролитическая диссоциация воды — это распад исходных молекул воды на протоны водорода и гидроксильную группу, поэтому константа диссоциации выражается уравнением: Кд = [Н+] • [ОН-]/[Н2О]. Эта величина для воды является постоянной и зависит только от температуры, при температуре, равной 25оС, Кд=1.86•10-16.
Зная молярную массу воды
(18 грамм/моль), а также пренебрегая
концентрацией диссоциированных молекул
и принимая массу 1 дм3 воды за 1000 г, можно
рассчитать концентрацию недиссоциированных
молекул в 1 дм3 воды: [Н2О]=1000/18,0153=55,51
моль/дм3. Тогда из уравнения константы
диссоциации можно найти произведение
концентраций протонов и гидроксильных
групп: [Н+]•[ОН-]=1,86•10-16•55,51=1•
Но в природе воды такой чистоты не существует из-за присутствия в ней растворенных газов или загрязнения воды другими веществами (фактически вода — это раствор различных электролитов), поэтому при 25оС концентрация протонов водорода или концентрация гидроксильных групп отличается от величины 1•10-7. То есть кислотность воды обусловлена протеканием не только такого процесса, как диссоциация воды. Водородный показатель является отрицательным логарифмом концентрации водородных ионов (рН), он введен для оценки кислотности или щелочности воды и водных растворов, так как числами с отрицательными степенями пользоваться затруднительно. Для чистой воды рН=7, но так как в природе чистой воды нет, и диссоциация воды протекает наряду с распадом других растворенных электролитов, то водородный показатель может быть меньше или больше 7, то есть для воды, практически, рН≠7.
Вопрос № 2.
Ответ:
Отличительным признаком окислительно-восстановительных (редокс-) реакций является перенос электронов между реагирующими частицами – ионами, атомами, молекулами, комплексами, в результате чего изменяется степень окисления реагирующих частиц, например,
Fe2+ - e- → Fe3+.
Поскольку электроны
не могут накапливаться в
aОx1 + bRed2 → аRed1 + bОx2,
аОx1 + nе- → aRed1,
bRed2 – nе- → bОx2,
где Ox – окисленная форма, Red – восстановленная форма.
Исходная частица и продукт каждой полуреакции составляют сопряженную окислительно-восстановительную пару или систему. Иными словами, в вышеприведенных полуреакциях Red1 является сопряженным с Оx1, а Оx2 сопряжен с Red2.
Окислительно-восстановительные реакции, как и все динамические процессы, в той или иной мере обратимы. Направление реакций определяется соотношением электронодонорных свойств компонентов системы одной окислительно-восстановительной полуреакции и электроно-акцепторных свойств второй (при условии постоянства факторов, влияющих на смещение равновесных химических реакций). Перемещение электронов в ходе окислительно-восстановительных реакций приводит к возникновению потенциала. Таким образом, потенциал, измеряемый в вольтах, служит мерой окислительно-восстановительной способности соединения.
Потенциал любой окислительно-
Стандартный потенциал окислительно – восстановительной системы принято считать положительным, если она выступает в качестве окислителя, а на водородном электроде протекает полуреакция окисления
Н2 – 2е- → 2Н+,
или отрицательным, если система играет роль восстановителя, а на водородном электроде происходит полуреакция восстановления
2Н+ + 2е- → Н2.
Значение стандартного потенциала характеризует «силу» окислителя или восстановителя.
Для характеристики окислительно-восстановительной системы в конкретных условиях пользуются понятием реального (формального) потенциала Е. Для вычисления реального потенциала полуреакции аОx + nе- → bRed,
пользуются уравнением Нернста:
Е= Е° + (RT/nF)ln(aaОx/abRed),
где Е° - стандартный потенциал, В; R - универсальная газовая постоянная, равная 8,314 Дж.моль-1.К-1; Т- абсолютная температура, К; n- число электронов, участвующих в полуреакции; F- постоянная Фарадея 9,6585.104 Кл×моль-1; а – активности окисленной и восстановленной форм.
После подстановки указанных величин (Т=298 К) и замены натурального логарифма десятичным, а также при замене активностей концентрацями уравнение Нернста приводится к виду:
Е=Е° + (0,059/n)lg([Оx1]a/ [Red1]b).
[Ox1], [Red1]- концентрации окисленной и восстановленной форм соответственно;
a, b –стехиометрические коэффициенты в уравнении рассматриваемой реакции.
Для самопроизвольно протекающих
реакций окисления-
Сu2+ + Н2(г) = Cu + 2 Н+(р); j°Ок - j°Вс = + 0,338 В
2 Fe3+ + Н2(г) = 2 Fe2+ + 2 Н+(р); j°Ок - j°Вс = + 0,771 В
самопроизвольно идут в прямом направлении, причем большее значение разности для второй реакции указывает, что она характеризуется более высокой степенью.
Вопрос № 3.
Ответ:
Комплексные соединения (лат. complexus — сочетание, обхват) или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
Комплексное соединение — химическое вещество, в состав которого входят комплексные частицы. В настоящее время строгого определения понятия «комплексная частица» нет. Обычно используется следующее определение.
Комплексная частица — сложная частица, способная к самостоятельному существованию в кристалле или растворе, образованная из других, более простых частиц, также способных к самостоятельному существованию. Иногда комплексными частицами называют сложные химические частицы, все или часть связей в которых образованы по донорно-акцепторному механизму.
Комплексообразователь — центральный атом комплексной частицы. Обычно комплексообразователь — атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Комплексообразователь обычно положительно заряжен и в таком случае именуется в современной научной литературе металлоцентром; заряд комплексообразователя может быть также отрицательным или равным нулю.
Лиганды — атомы или изолированные группы атомов, располагающиеся вокруг комплексообразователя. Лигандами могут быть частицы, до образования комплексного соединения представлявшие собой молекулы (H2O, CO, NH3 и др.), анионы (OH−, Cl−, PO43− и др.), а также катион водорода H+.
Внутренняя сфера комплексного соединения — центральный атом со связанными с ним лигандами, то есть, собственно, комплексная частица.
Внешняя сфера комплексного соединения — остальные частицы, связанные с комплексной частицей ионной или межмолекулярными связями, включая водородные.
Дентатность лиганда определяется числом координационных мест, занимаемых лигандом в координационной сфере комплексообразователя. Различают монодентатные (унидентатные) лиганды, связанные с центральным атомом через один из своих атомов, то есть одной ковалентной связью), бидентатные (связанные с центральным атомом через два своих атома, то есть, двумя связями), три- , тетрадентатные и т. д.
Координационный полиэдр — воображаемый молекулярный многогранник, в центре которого расположен атом-комплексообразователь, а в вершинах — частицы лигандов, непосредственно связанные с центральным атомом.
Координационное число (КЧ) — число связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов — числу таких лигандов, умноженному на дентатность.
Существует
несколько классификации
По заряду комплекса
1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул (H2O, NH3 и др.).
[(Zn(NH3)4)]Cl2 — хлорид
тетраамминцинка(II)
[Co(NH3)6]Cl2 — хлорид гексаамминкобальта(II)
2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.
K2[BeF4] — тетрафторобериллат(II)
калия
Li[AlH4] — тетрагидридоалюминат(III)
лития
K3[Fe(CN)6] — гексацианоферрат(III)
калия
3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.
[Ni(CO)4] — тетракарбонилникель
[Pt(NH3)2Cl2] — дихлородиамминплатина(II)
По числу мест, занимаемых лигандами в координационной сфере
1) Монодентатные лиганды. Такие лиганды бывают нейтральными (молекулы Н2О, NH3, CO, NO и др.) и заряженными (ионы CN−, F−, Cl−, OH−, SCN−, S2O32− и др.).
2) Бидентатные лиганды. Примерами служат лиганды: ион аминоуксусной кислоты H2N — CH2 — COO−, оксалатный ион −O — CO — CO — O−, карбонат-ион СО32−, сульфат-ион SO42−.
3) Полидентатные лиганды. Например, комплексоны — органические лиганды, содержащие в своём составе несколько групп −С≡N или −COOH (этилендиаминтетрауксусная кислота — ЭДТА). Циклические комплексы, образуемые некоторыми полидентатными лигандами, относят к хелатным (гемоглобин и др.).
По природе лиганда
1) Аммиакаты — комплексы, в которых лигандами служат молекулы аммиака, например: [Cu(NH3)4]SO4, [Co(NH3)6]Cl3, [Pt(NH3)6]Cl4 и др.
2) Аквакомплексы — в которых лигандом выступает вода: [Co(H2O)6]Cl2, [Al(H2O)6]Cl3 и др.
3) Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(II): [Fe(CO)5], [Ni(CO)4].
4) Ацидокомплексы — комплексы, в которых лигандами являются кислотные остатки. К ним относятся комплексные соли: K2[PtCl4], комплексные кислоты: H2[CoCl4], H2[SiF6].
5) Гидроксокомплексы — комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na2[Zn(OH)4], Na2[Sn(OH)6] и др.
Комплексные соединения в растворах
диссоциируют на внешнюю и внутреннюю
координационные сферы
[Ni(NH3)4]SO4 = [Ni(NH3)4]2+ + SO42- ;
Комплексные соединения обладают различной прочностью внутренней координационной сферы. Наряду с соединениями, внутренняя сфера которых отличается значительной прочностью и для которых диссоциация ничтожно мала, существуют соединения с крайне непрочной внутренней сферой. Растворы этих соединений практически не содержат комплексных ионов, так как они полностью диссоциируют на свои составные части, это - двойные соли. Диссоциация внутренней координационной сферы носит название вторичной, является обратимым процессом и проходит по типу слабых электролитов. Момент наступления равновесия характеризуется константой равновесия, которая в случае комплексного иона носит название константы нестойкости (КН)
Значения констант нестойкости различных комплексных ионов колеблются в широких пределах и могут служить мерой устойчивости комплекса.
Чем меньше значение Кн, тем более прочен данный комплекс.
Задача № 1.
Дано:
V = 200,0 мл = 0,2 литра
m (KOH) = 1,4 грамма
p H - ?
Информация о работе Контрольная работа по "Аналитической химии"