Автор: Пользователь скрыл имя, 22 Декабря 2012 в 20:07, реферат
Физические свойства. Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе
Реферат
по химии биогенных элементов
на тему «Комплексы металлов с аминокислотами»
Нечаев Георгий
МС 101
15.12.12
Физические свойства. Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:
Аминокислоты с одной
карбоксильной группой и одной
аминогруппой имеют нейтральную реакцию.
Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН):
С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.
Химические свойства. Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:
H2N–CH2–COOH + HCl [H3N+–CH2–COOH] Cl–
Как карбоновые кислоты они образуют функциональные производные:
а) соли
H2N–CH2–COOH + NaOH H2N–CH2–COO– Na+ + H2O
б) сложные эфиры
Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).
Практическое значение имеет
внутримолекулярное взаимодействие функциональных
групп ε-аминокапроновой
Межмолекулярное взаимодействие α-аминокислот приводит к образованию пептидов. При взаимодействии двух α-аминокислот образуется дипептид.
Заметим, что в искусственных условиях (вне организма) 2 различных аминокислоты могут образовать 4 изомерных дипептида (попробуйте представить их формулы).
Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.
Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью.
Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е. представляют собой продукт поликонденсации α-аминокислот.
Причину отравлений соединениями металлов долгое время объясняли образованием в организме так называемых альбуминатов. Однако сторонники этой гипотезы химизм образования, состав и прочность альбуминатов не приводят. Благодаря успехам в области биологической химии, фармакологии, токсикологии и ряда других наук установлено, что в организме ионы металлов связываются не только с белковыми веществами, но и с аминокислотами, пептидами и рядом других жизненно важных веществ. Прочность образовавшихся при этом соединений (комплексов) зависит от природы металлов, наличия соответствующих функциональных групп в молекулах веществ, связывающихся с металлами, природы связи в образовавшихся соединениях или комплексах и т. д. Связывание ионов металлов аминокислотами. В настоящее время известно значительное число аминокислот. Однако в состав белков входит только около двадцати а-аминокислот. Все аминокислоты (кроме пролина), входящие в состав белков, содержат свободную карбоксильную группу и свободную незамещенную аминогруппу у а-углеродного атома. Пролин имеет замещенную а-аминогруппу и представляет собой а-имино-кислоту. Способность ионов металлов
взаимодействовать с В зависимости от наличия определенных групп атомов в молекулах аминокислот, природы и химических свойств металлов при взаимодействии между ними могут образовываться связи различной прочности. Аминокислоты в водных растворах и в кристаллическом состоянии находятся в виде биполярных ионов:
Аминокислоты являются амфотерными соединениями. Диссоциация их на ионы зависит от рН среды. В кислой среде аминокислоты диссоциируют как основания, в щелочной - как кислоты:
Катионы металлов взаимодействуют с анионами аминокислот. В аминогруппах аминокислот содержатся атомы азота, имеющие неподеленную пару электронов, за счет которой образуется координационная связь между катионом металла и атомом азота. Эту связь следует рассматривать как один из видов ковалентной связи. При образовании координационной связи между катионом металла и атомом азота донором обоих связывающих электронов является атом азота аминогруппы. Один атом кислорода в
карбоксильной группе аминокислоты
после ее диссоциации имеет Катионы металлов, являющиеся комплексообразователями, с аминокислотами образовывают внутрикомплексные соединения (хелаты). При этом положительные заряды катионов нейтрализуются отрицательными зарядами атомов кислорода в карбоксильных группах, а незаряженные атомы азота аминогрупп с катионами металлов образовывают координационные связи. Катионы металлов также могут связываться с боковыми реак-ционноспособными функциональными группами (-SH,-NH2,-СООН) аминокислот с образованием внутрикомплексных соединений. Из аминокислот большой способностью связывать металлы обладают гистидин, содержащий в молекуле имидазольное кольцо, и цистеин, в молекуле которого имеется сульфгидрильная группа. Образование внутрикомплексных соединений катионов металлов с аминокислотами можно показать на примере фенилаланина и цистеина
|