Электролитическое рафинирование меди

Автор: Пользователь скрыл имя, 08 Ноября 2010 в 21:35, курсовая работа

Описание работы

Электролитическое рафинирование меди преследует две цели:
1)получение меди высокой чистоты (99,90—99,99% Сu), удовлетворяющей требованиям большинства потребителей;
2) извлечение попутно с рафинированием благородных и других ценных компонентов (Se, Те, Ni, Bi и др.).
Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролитной меди. Именно поэтому при конвертировании медных штейнов стремятся использовать в качестве флюса золотосодержащие кварциты.
Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы — катодные основы.
При включении ванн в сеть постоянного тока происходит электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

Работа содержит 1 файл

Курсак Cu-Ni.docx

— 26.06 Кб (Скачать)

Электролитическое рафинирование меди преследует две  цели:

  1)получение меди высокой чистоты (99,90—99,99% Сu), удовлетворяющей требованиям большинства потребителей;

  2) извлечение попутно с рафинированием  благородных и других ценных  компонентов (Se, Те, Ni, Bi и др.).

  Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость  электролитной меди. Именно поэтому при конвертировании медных штейнов стремятся использовать в качестве флюса золотосодержащие кварциты.

  Для осуществления электролитического рафинирования меди аноды, отлитые  после огневого рафинирования, помещают в электролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы — катодные основы.

    При включении ванн в сеть  постоянного тока происходит  электрохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

    В результате электролитического  рафинирования получают катодную  медь; шлам, содержащий благородные  металлы; селен;

теллур  и загрязненный электролит, часть  которого иногда используют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

   Электролитическое рафинирование  меди основано на различии  ее электрохимических свойств  и содержащихся в ней примесей. В таблице 1 приведены нормальные электродные потенциалы меди и наиболее часто встречающихся в ней примесей.

                                                                                                                    Таблица 1

Металл Ион Потенциал, В Металл Ион Потенциал, В
Литий L+ -2,96 Кобальт Co2+ -0,29
Калий К+ -2,925 Никель Ni2+ -0,25
Кальций Сa2+ -2,87 Олово Sn2+ -0,136
Натрий Na+ -2,714 Свинец Pb2+ -0,126
Магний Mg2+ -2,37 Водород H+ 0.000
Алюминий Al3+ -1,66 Медь Cu2+ +0,337
Марганец Mn2+ -1,18 Серебро Ag+ +0,779
Цинк Zn2+ -0,763 Золото Au3+ +1,500
Железо Fe2+ -0,440      
 

  Медь  относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных растворах (обычно в сернокислых).

    На катоде протекают те же  электрохимические реакции, но  в обратном направлении. Соотношение  между одновалентной и двухвалентной медью в растворе определяется равновесием реакции диспропорционирования.

Следовательно, в состоянии равновесия концентрация в растворе ионов Сu+ примерно в тысячу раз меньше, чем концентрация ионов Сu2+. Тем не менее реакция имеет существенное значение для электролиза. Она в частности определяет переход меди в шлам. В начальный момент вблизи анода в растворе соотношение двух- и одновалентной меди соответствует константе равновесия. Однако вследствие большего заряда и меньшего ионного радиуса скорость перемещения двухвалентных ионов к катоду превышает скорость переноса ионов одновалентных. В результате этого в прианодном слое концентрация ионов Сu2+ становится выше равновесной и реакция начинает идти в сторону образования тонкого порошка меди, выпадающего в шлам.

Как указывалось  выше, электролитическое рафинирование  осуществляют в сернокислых растворах. Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электролит наряду с медным купоросом свободной серной кислоты существенно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с подвижностью крупных катионов и сложных анионных комплексов.

Для улучшения  качества катодной поверхности в  электролиты для рафинирования  меди на всех заводах обязательно  вводят разнообразные поверхностно-активные  (коллоидные) добавки:

клей (чаще столярный), желатин, сульфитный щелок. В процессе электролиза на поверхности  катода могут образовываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстояния ведет к уменьшению электрического сопротивления, а следовательно, к местному увеличению плотности тока. Последнее в свою очередь обусловливает ускоренное осаждение меди на дендрите и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом. При наличии дендритов сильно развитая поверхность катода удерживает большое количество электролита и плохо промывается, что не только ухудшает качество товарных катодов, но и может вызвать брак катодной меди по составу. Одно из объяснений механизма действия поверхностно-активных веществ заключается в том, что они адсорбируются на наиболее активных частях поверхности и при этом вызывают местное повышение электрического сопротивления, что и препятствует росту дендрита. В результате поверхность катодов получается более ровной, а катодный осадок более плотным. После выравнивания катодной поверхности коллоидная добавка десорбирует в электролит.

  Растворы  коллоидных добавок непрерывно вводят в циркулирующий электролит. Вид и расход поверхностно-активных веществ различны для каждого предприятия. Обычно применяют одновременно две добавки. На 1 т получаемой катодной меди расходуют 15—40 г клея, 15—20 г желатина, 20—60 г сульфитных щелоков или 60—100 г тиомочевины.

  Основными требованиями, предъявляемыми к электролиту, являются его высокая электропроводность (низкое электрическое сопротивление) и чистота. Однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок, обязательно содержат растворенные примеси, содержащиеся до этого в анодной меди.  Поведение примесей анодной меди при электролитическом рафинировании определяется их положением в ряду напряжений. По электрохимическим свойствам примеси можно разделить на четыре группы:

  I группа — металлы более электроотрицательные, чем медь (Ni, Fe, Zn и др.);

  II группа — металлы, близко стоящие в ряду напряжений к меди (As, Sb, Bi);

  III группа — металлы более электроположительные, чем медь (Au, Ag и платиноиды);

  IV группа — электрохимически нейтральные в условиях рафинирования меди химические соединения (Cu2S, Cu2Se, Cu2Te, AuTe2, Ag2Te).

  Примеси первой группы, обладающие наиболее электроотрицательным потенциалом, практически полностью переходят в электролит. Исключение составляет лишь никель, около 5% которого из анода осаждается в шлам в виде твердого раствора никеля в меди. Твердые растворы по закону Нернста становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особо по сравнению с перечисленными группами примесей ведут себя свинец и олово, которые по электрохимическим свойствам относятся к примесям I группы, но по своему поведению в процессе электролиза могут быть отнесены к примесям III и IV групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbSO4 и метаоловянную кислоту H2SnO3. Электроотрицательные примеси на катоде в условиях электролиза меди практически не осаждаются и постепенно накапливаются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно расстроиться.

Накопление  в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме  того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию  у катода.

Электроотрицательные  металлы могут попадать в катодную медь в основном в виде межкристаллических включений . раствора или основных солей, особенно при их значительной концентрации в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зрения возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих сульфатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подвергаются гидролизу, образуя основные соли (Sb и Bi) или мышьяковистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков («плавучий» шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и  висмута могут попадать как электрохимическим, так и механическим путем в  результате адсорбции тонкодисперсных  частичек «плавучего» шлама. Таким  образом, примеси II группы распределяются между электролитом, катодной медью  и шламом. Предельно допустимые концентрации примесей II группы в электролите  составляют, г/л:9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению  с медью примеси (III группа), к которым  относятся благородные металлы (главным  образом, Au и Ag), в соответствии с положением в ряду напряжений должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5% от его содержания в анодах, а серебра — более 98%. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для уменьшения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество иона хлора.

Несмотря  на практически полный переход золота и серебра в шлам, они все же в небольшом количестве попадают в катодные осадки. Объясняется это механическим захватом взмученного шлама и отчасти явлением катофореза. На механический перенос шлама на катод влияют применяемая плотность тока и взаимосвязанная с ней скорость циркуляции электролита. С увеличением скорости циркуляции вследствие взмучивания шлама переход золота и серебра на катод возрастает. При выборе плотности тока и способа циркуляции электролита необходимо учитывать содержание благородных металлов в анодах. В случае их повышенного содержания плотность тока должна быть меньше. Снижению переноса шлама на катод способствует также наличие в ванне зоны отстаивания (область от нижнего конца катода до дна ванны). На многих заводах электролит перед его возвращением в ванну в цикле циркуляции подвергают фильтрованию, что уменьшает потери шлама и обеспечивает получение более чистой меди.

Аналогично  электроположительным примесям ведут  себя при электролизе меди химические соединения (примеси IV группы). Хотя в  принципе химические соединения и могут  окисляться на аноде и восстанавливаться  на катоде, что используют в специальных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99% селена и теллура.

     В таблице 2 приводятся данные о распределении примесей при электролизе меди.  

                                                                                                              Таблица 2

Распределение меди и примесей между катодами,раствором и шламом,%.

Продукты Cu Au Ag Se+Te Pb Ni As
Катоды 98 1-1,5 2-3 1-2 1-5 15 20
Раствор 1,93 - - - - 75 60
Шламы 0,07 98,5-99 97-98 98-99 95-99 10 20
 

     Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом.

Основными характеристиками, определяющими параметры  и показатели электролитического рафинирования меди, являются плотность тока, выход металла по току, напряжение на ванне, удельный расход электроэнергии.

Плотность тока является важнейшим параметром процесса электролиза. Она выражается в амперах на единицу поверхности электрода (D=I/S). В металлургии меди ее принято выражать в амперах на квадратный метр площади катодов. По закону Фарадея на каждый 1 А • ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А • ч. Следовательно, с увеличением плотности тока интенсивность (производительность) процесса электролиза возрастает. Величина плотности тока, при которой проводят процесс электролитического рафинирования, определяет все его основные технико-экономические показатели: напряжение на ванне, выход по току, расход электроэнергии, а также капитальные и эксплуатационные затраты. С увеличением плотности тока при прочих равных условиях увеличивается производительность цеха, уменьшаются число потребных ванн, затраты на капитальное строительство и рабочую силу, но возрастают затраты на электроэнергию. Следует отметить, однако, что с увеличением плотности тока увеличиваются потери благородных металлов за счет большего взмучивания шлама и захвата его растущим катодным осадком. В настоящее время применение особых режимов электролиза (реверсивного тока, измененной системы циркуляции электролита и др.) позволяет довести плотность тока до 500 А/м2 и более.

Информация о работе Электролитическое рафинирование меди