История химии

Автор: Пользователь скрыл имя, 12 Марта 2013 в 13:31, реферат

Описание работы

Дмитрий Иванович Менделеев (1834 - 1907) – русский ученый. Родился недалеко от Тобольска в селе Верхние Аремзяны.
Обучение в своей биографии Дмитрий Менделеев проходил вначале в тобольской гимназии. Затем в жизни Менделеева с успехом, золотой медалью был закончен педагогический институт Петербурга (физико-математический факультет).

Работа содержит 1 файл

история химии и хим тех.docx

— 53.75 Кб (Скачать)

Элементы  группы цинка как правило, считаются d-блок элементами, но не переходными металлами, у которых s-оболочка заполнена. Некоторые авторы классифицируют эти элементы как основные элементы группы, поскольку валентные электроны у них расположены на ns²-орбиталях. Так, цинк имеет много сходных характеристик с соседним переходным металлом — медью. Например, комплексы цинка заслужили включения в ряд Ирвинга-Уильямса, поскольку цинк образует многие комплексные соединения с такой же стехиометрией, как и комплексы меди (II), хотя и с меньшей константой устойчивости. Очень мало сходства между кадмием и серебром, поскольку соединения серебра (II) являются редкими, а те, что существуют, являются очень сильными окислителями. Аналогичным образом, окислительно-восстановительный статус для золота равен +3, что исключает сходство между химией ртути и золота, хотя есть сходство между ртутью (I) и золотом (I), такое как формирование линейных цианистых комплексов [M(CN)2].

 

Третья  Подгру́ппа ска́ндия — химические элементы 3-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы III группы). Ввиду особенностей строения электронной конфигурации элементов этой группы точный состав её в разных источниках имеет различия. ИЮПАК не даёт строгих рекомендаций по спецификациям формата периодической таблицы. Поэтому по составу группы 3 имеются и часто используются несколько конвенций. Следующие d-элементы из переходных металлов всегда считаются членами группы 3: скандий (Sc),иттрий (Y)

При определении оставшейся части группы 3 возникли 4 конвенции:

  • Некоторые таблицы  включают в члены группы 3 лантан (La) и актиний (Ac) (начальные элементы семейств лантаноидов и актиноидов, соответственно). В наиболее часто встречающихся формах 3+ ионов эти элементы не имеют частично заполненных f-орбиталей, в результате чего их поведение ближе к поведению d-элементов.
  • Некоторые таблицы  включают в члены группы 3 лютеций (Lu) и лоуренсий (Lr). Эти элементы стоят в конце списка семейств лантаноидов иактиноидов, соответственно. Поскольку для обоих этих металлов в электронной конфигурации основного состояния f-оболочки заполнены в полном объёме, то они ведут себя как наиболее близкие к d-элементам металлы из всех лантанидов и актинидов, и, таким образом, демонстрируют наибольшее сходство свойств со скандием и иттрием. Для лоуренсия ожидается именно такое поведение, но наблюдать его на практике не приходилось, поскольку этого эелемента нет в достаточном количестве. (См. Некоторые таблицы  ссылаются на все лантаноиды и актиноиды как на членов группы 3. Третья и четвёртая конвенции различаются по этому условию:
  • По третьей конвенции членами группы 3 считаются все 30 лантаноидов и актиноидов. Лантаноиды как электроположительные трёхвалентные металлы, химически тесно связаны, и все они показывают много общего со скандием и иттрием.
  • По четвёртой конвенции в группу 3 не включаются ни лантаноиды, ни актиноиды. Лантаноиды обладают дополнительными свойствами, характерными для их частично заполненных f-орбиталей, которые не являются общими со скандием и иттрием. Кроме того, актиноиды демонстрируют гораздо более широкий круг химических свойств внутри своего семейства (например, в размере диапазона степени окисления), чем лантаноиды, и сравнение со скандием и иттрием становится ещё менее продуктивным.

Термин редкоземельные элементы, часто использующийся для обозначения элементов группы 3, включает лантаноиды, но исключает актиноиды.

Распростанение в природе

Скандий, иттрий и лантаноиды (кроме прометия) встречаются в земной коре, как правило, вместе, и в относительном изобилии по сравнению с большинством d-металлов, но зачастую их трудно извлечь из руд.

Содержание  в земной коре элементов подгруппы  скандия таково: скандий – 2·10−4%, иттрий – 5·10−4%, лантан – 2·10−4%, актиний – 5·10−15%. Богатые каким–либо одним из них минералы встречаются крайне редко. Отдельные элементы подгруппы скандия и их производные ещё не нашли применения, а соединения актиния даже почти не изучены. Немногие имеющиеся данные указывают на его большое сходство с лантаном.

В более или менее чистом состоянии  был пока выделен только лантан, свойства которого изучены довольно подробно. Он представляет собой белый  металл с плотностью 6,2, несколько более твёрдый, чем олово, плавящийся при 826 и кипящий около 1800 °C. Электропроводность лантана примерно в два раза больше, чем у ртути.

Химическая  активность лантана очень велика. Он медленно разлагает воду с выделением водорода, легко растворяется в кислотах и при нагревании энергично реагирует  со всеми металлоидами. Свойства Sc и Y похожи на свойства лантана. В своих соединениях скандий и его аналоги исключительно трёхвалентны.

Биологическая химия

Элементы 3 группы, как правило, являются твёрдыми металлами с низкой растворимостью в воде, поэтому они имеют чрезвычайно  низкую доступность для биосферы. Ни один элемент группы 3 не играет никакой  документально подтверждённой биологической  роли в живых организмах. Радиоактивность  актиноидов в целом делает их весьма токсичными для живых клеток.

 

Четвертая Подгруппа титана — химические элементы 4-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы IV группы) . По номенклатуре ИЮПАК подгруппа титана содержит в себетитан, цирконий, гафний и резерфордий.

Первые три  элемента данной подгруппы находятся  в природе в заметных количествах. Они относятся к тугоплавким металлам. Последний представитель — резерфордий — радиоактивный элемент. У него нет стабильных изотопов. Его физические и химические свойства не изучены. Цирконий и титан были изучены в XVII веке, в то время как гафний был открыт только в 1923 году. На протяжении двухсот лет химикам не удавалось открыть новый элемент гафний, в то время как он присутствовал в качестве примеси почти во всех соединениях циркония в значительных количества.

Вильям Грегор (англ.), Франц-Йозеф Мюллер фон Рейхенштейн (англ.) и Мартин Генрих Клапрот независимо друг от друга обнаружили титан в 1791 и 1795 гг. Клапрот назвал элемент титаном, в честь персонажей греческой мифологии. Также Клапрот обнаружил цирконий в его минеральной форме: циркон, и назвал новый элемент Цирконердом. Существование гафния было предсказано великим русским химиком Д. И. Менделеевым в 1869 году. Генри Мозли посредством рентгеноспектрального анализа вычислил атомный номер гафния — он оказался равен 72. После обнаружения нового элемента Дирк Костер и Дьёрдь де Хевеши первыми принялись за поиски гафния в циркониевых рудах[6]. После его нахождения гафний был изучен двумя первооткрывателями в 1923 году для проверки предсказания Менделеева[7].

По  сообщениям, резерфордий был открыт в 1966 году в объединённом институте ядерных исследований в Дубне. Для получения элемента ядра 242Pu бомбардировались ускоренными ядрами 22Ne. Элемент после бомбардировки отделялся с помощью градиентной термохроматографии после реакции с ZrCl4.

24294Pu + 2210Ne → 264−x104Rf → 264−x104RfCl4

Пятая Подгру́ппа вана́дия — химические элементы 5-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы побочной подгруппы V группы). В группу входят ванадий V, ниобий Nb и тантал Ta. На основании электронной конфигурации атома к этой же группе относится и элемент дубний Db, искусственно синтезированный в наукограде Дубне в 1970 г. группой Г. Н. Флёрова путём бомбардировки ядер 243Amионами 22Ne и независимо в Беркли (США) в реакции 249Cf+15N→260Db+4n.

История


Открытие элементов 5 группы связано со значительными противоречиями и трудностями для химиков. Проверка вновь открытых элементов была затруднительной  из-за сходства ванадия и элемента 6 группы хрома, химического сходства ниобия и тантала и сложности установок, которые были необходимы для производства нескольких атомов дубния.

Элементы 5 группы похожи друг на друга не только по своим свойствам, но и «родственники» по названиям. Во-первых, наименования всех трёх относятся к  области мифологии. Во-вторых, в названиях  указана прямая родственная связь: в древнегреческой мифологии  Ниобея является дочерью Тантала.

Ванадий назван в честь  богини красоты древних скандинавов — легендарной Фреи Ванадис. Это имя элементу дал в 1831 г. Гавриил Сефстрём, профессор Горного института в Стокгольме.

Тантал открыт в 1802 г. шведским химиком Экебергом в двух минералах, найденных в Финляндии и Швеции.

Ниобий открыт в 1801 г. английским учёным Ч. Хатчетом в минерале (колумбите), найденном в бассейне р. Колумбии, и потому получил название «колумбий». В 1844 году немецкий химик Генрих Розе переименовал его в «ниобий» в честь дочери Тантала Ниобы, чем подчеркнул сходство между ниобием и танталом. Однако в некоторых странах (США, Англии) долго сохранялось первоначальное название элемента — колумбий, и только в 1950 году решением Международного союза теоретической и прикладной химии (ИЮПАК) элементу окончательно было присвоено название ниобий.

Распространение в природе и биосфере

Ванадий довольно широко распространён в природе  и составляет около 0,005 % от общего числа атомов земной коры. Однако богатые месторождения его минералов встречаются весьма редко. Помимо подобных месторождений, важным источником сырья для промышленного получения ванадия являются некоторые железные руды, содержащие примеси соединений этого элемента.


Содержание ниобия (2·10−4 %) и тантала (2·10−5 %) в земной коре значительно меньше, чем ванадия. Встречаются они главным образом в виде минералов колумбита Fe2+Nb2Oи танталита Fe2+Ta2O6, которые обычно смешаны друг с другом.

Из элементов 5 группы только ванадий был идентифицирован  как играющий роль в биохимии живых  систем: он участвует в некоторых ферментах высших организмов, а также, что необычно, в биохимии некоторых морских оболочников.


Информация о работе История химии