Химическая термодинамика

Автор: Пользователь скрыл имя, 18 Ноября 2011 в 02:07, реферат

Описание работы

Рассмотрены основные вопросы химической термодинамики.

Содержание

1.Химическая термодинамика………………………………………….3

1.1. Основные понятия термодинамики…………………………………3

2. Первое начало термодинамики………………………………….........6

3. Закон Гесса……………………………………………….………….....9

4. Второе начало термодинамики. Энтропия…………………..………12

Список литературы……………………………………………………14

Работа содержит 1 файл

Химическая термодинамика.doc

— 110.50 Кб (Скачать)

МИНИСТЕРСТВО  СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ

РЕСПУБЛИКИ  БЕЛАРУСЬ

УЧРЕЖДЕНИЕ  ОБРАЗОВАНИЯ

ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ 
 
 
 

РЕФЕРАТ 

НА ТЕМУ 

ХИМИЧЕСКАЯ 

ТЕРМОДИНАМИКА 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           Подготовил: студентка 1 курса ИТФ

                                                                Тарас Наталья Викторовна

                                                                 Проверил: преподаватель 

                                                                 Лукашенко Ю.А. 
 
 
 
 
 
 
 

ГРОДНО

2009 

План.

  1. Химическая термодинамика………………………………………….3

     1.1. Основные понятия термодинамики…………………………………3

    2. Первое начало  термодинамики………………………………….........6

    3. Закон Гесса……………………………………………….………….....9

     4. Второе начало термодинамики. Энтропия…………………..………12

         Список литературы……………………………………………………14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

    Термодинамика – наука о взаимопревращениях различных форм энергии и законах этих превращений. Термодинамика базируется только на экспериментально обнаруженных объективных закономерностях, выраженных в двух основных началах термодинамики.

    Термодинамика изучает:

1.  Переходы энергии из одной формы в другую, от одной части системы к другой;

2.  Энергетические эффекты, сопровождающие различные физические и химические процессы и зависимость их от условий протекания данных процессов;

3.  Возможность, направление и пределы самопроизвольного протекания процессов в рассматриваемых условиях.

    Необходимо отметить, что классическая термодинамика имеет следующие ограничения:

1.  Термодинамика не рассматривает внутреннее строение тел и механизм протекающих в них процессов;

2.  Классическая термодинамика изучает только макроскопические системы;

3.  В термодинамике отсутствует понятие "время".

1.1. ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная  система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая  система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая  система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность  всех физических и химических свойств системы характеризует её термодинамическое состояние. Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния. Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс.

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя  энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

    Формы перехода энергии от одной системы к другой могут быть разбиты на две группы. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота.  Теплота есть форма передачи энергии путём неупорядоченного движения молекул. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил.                               Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Первое начало термодинамики представляет собой  закон сохранения энергии, один из всеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):

Энергия не уничтожаема и не образуема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат – оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом. Приведем еще некоторые формулировки первого начала термодинамики:

Полная энергия  изолированной системы постоянна;

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты  энергии).

Первое начало термодинамики устанавливает соотношение  между теплотой Q, работой А и изменением внутренней энергии системы ΔU:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус  количество работы, совершенной системой против внешних сил.

                       (I.1)

                   (I.2)

Уравнение (I.1) является математической записью 1-го начала термодинамики для конечного, уравнение (I.2) – для бесконечно малого изменения состояния системы.

Внутренняя энергия  является функцией состояния; это означает, что изменение внутренней энергии  ΔU не зависит от пути перехода системы  из состояния 1 в состояние 2 и равно разности величин внутренней энергии U2 и U1 в этих состояниях:

                      (I.3)

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.

Рассмотрим приложение первого начала термодинамики для  определения работы, совершаемой  системой при различных термодинамических процессах (мы будем рассматривать простейший случай – работу расширения идеального газа).

Изохорный процесс (V = const;  ΔV = 0).

Поскольку работа расширения равна произведению давления и изменения объема, для изохорного процесса получаем:

                        (I.1)

                     (I.4)

                            (I.5)

Изотермический  процесс (Т = const).

Из уравнения  состояния одного моля идеального газа получаем:

                         (I.6)

Отсюда:

            (I.7)

Проинтегрировав выражение (I.6) от V1 до V2, получим

               (I.8) 
  

Изобарный процесс (Р = const).

                       (I.9)

Подставляя полученные выражения для работы различных  процессов в уравнение (I.1), для  тепловых эффектов этих процессов получим:

                                            (I.10)

         (I.11)

                                (I.12)

В уравнении (I.12) сгруппируем переменные с одинаковыми  индексами. Получаем:

                   (I.13)

Введем новую  функцию состояния системы –  энтальпию H, тождественно равную сумме  внутренней энергии и произведения давления на объем:

  

Тогда выражение (I.13) преобразуется к следующему виду:

                (I.14)

Т.о., тепловой эффект изобарного процесса равен изменению  энтальпии системы.

Адиабатический  процесс (Q = 0).

При адиабатическом процессе работа расширения совершается  за счёт уменьшения внутренней энергии газа:

                      (I.15)

В случае если Cv не зависит от температуры (что справедливо для многих реальных газов), работа, произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

                      (I.16) 
 
 
 
 

3. Закон Гесса

Как известно, большинство  химических реакций сопровождаются выделением (экзотермические реакции) либо поглощением (эндотермические реакции) теплоты. Первое начало термодинамики дает возможность рассчитать тепловой эффект химической реакции при различных условиях её проведения.

Информация о работе Химическая термодинамика