Автор: Пользователь скрыл имя, 17 Февраля 2013 в 15:26, реферат
Моторные топлива - бензин, керосин, дизельное топливо - в основном получаются в процессе переработки нефтей. В зависимости от состава нефтей и способа их переработки моторные топлива могут различаться качеством, не всегда соответствующим требованиям ГОСТа на товарную продукцию.
Цель гидроочистки - улучшение качества продукта или фракции за счет удаления нежелательных примесей, таких, как сера, а
Накопившийся в низу сепаратора
Е-2/1 конденсат выводится в
В отпарной колонне К-1/1 происходит отгон легких углеводородов, растворенных углеводородных газов и сероводорода за счет подачи перегретого водяного пара и снижения давления. В колонне К-1/1 имеются 13 тарелок S-образного типа. Подача сырья предусмотрена на 13, 10 и 7 тарелки.
В низ колонны К – 1/1 подается перегретый водяной пар. Схема получения перегретого водяного пара имеет следующий вид: от паровой гребенки печи П-1 острый водяной пар с давлением до 12 кгс/см² поступает в змеевики пароперегревателей в печи П-1, где нагревается до температуры 240 0С. Далее перегретый пар через маточник подаётся под нижнюю тарелку колонны К-1/1. Расход перегретого пара в колонны регулируется клапаном, установленном на линии подачи пара в К-1/1.
Отогнанные в отпарной колонне К-1/1 легкие фракции, уходящие вместе с водяным паром сверху колонны с температурой до 180 0С поступают в межтрубное пространство холодильников Т-5/1, Т-5/2, где происходит конденсация и охлаждение. Далее сконденсированный продукт и углеводородный газ с температурой до 50 0С поступают в сепаратор С-3.
С низа отпарной колонны К-1/1 гидроочищенное топливо, содержащее следы воды самотеком поступает в колонну вакуумной сушки К-2/1. Так же возможен вывод продукта помимо колонны К-2/1 напрямую в товарный парк. Уровень в К-1/1 регулируется клапаном, который установлен на перетоке гидрогенизата из К-1/1 в К-2/1.
В колонне К-2/1 происходит
испарение воды под вакуумом. Вакуум
создается с помощью
Оборотная вода подается в холодильник эжектора для охлаждения и конденсации паров из К-2/1 и стекает по барометрической трубе, опущенной под слой воды, в ящик барометрической трубы Е-31/1 для обеспечения гидрозатвора.
Готовое гидроочищенное топливо с низа колонны вакуумной осушки К-2/1 поступает на прием насоса Н-5 (Н–8) и прокачивается насосом через трубное пространство теплообменника Т-1/1, где охлаждается, нагревая газосырьевую смесь, проходящую через межтрубное пространство Т-1/1.
После теплообменника Т-1/1 гидроочищенное топливо охлаждается в межтрубном пространстве холодильника Т-8/1 до температуры не более 60 0С.
Далее гидроочищенное дизельное топливо выводится в резервуары товарного парка.
3.2.2 Режим работы реактора
В реакторе на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/см². Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.
Оптимальный режим работы реактора:
Температура сырья на входе в реактор 320–360 °С
Давление на входе в реактор 4,0–4,5 МПа
Кратность циркуляции ВСГ 200–300 нм3/м3
Объемная скорость подачи сырья 2,0–4,0 ч-1
3.2.3 Характеристика
производственной среды.
Установка Г-24/1 предназначена
для гидроочистки масел или дизельного
топлива путем деструктивной
гидрогенизацией сернистых
Полная разгерметизация технологического оборудования с перегретой жидкостью сопровождается переходом большой части этой жидкости в парообразное состояние и образованием взрывопожароопасных облаков. Взрывы подобных облаков обладают большой разрушительной силой и сопровождаются серьезными последствиями.
Наиболее тяжелые последствия
могут быть в результате аварии при
мгновенной разгерметизации оборудования
и выброса смеси
При разливе жидких углеводородов
происходит испарение углеводородов
с поверхности разлития. Объем
образующегося парогазового облака
углеводородов значительно
Основными факторами опасности на установке являются:
- горючесть, взрывоопасность
и токсичность продуктов,
- возможность образования
зарядов статического
- наличие электротехнических устройств высокого напряжения;
- применение в технологическом
процессе нагревательных печей,
- наличие насосов и компрессоров, нагнетающих токсичные и взрывоопасные продукты;
- наличие нагретых до
высоких температур
Характеристика вредных и взрывопожароопасных веществ, применяемых, обращаемых и получаемых на установке Г–24/1.
3.2.4 Мероприятия по обеспечению безопасности производства
Для обеспечения безопасности производства каждый сотрудник проходит инструктаж.
Для обеспечения безаварийной работы установки и достижения минимального уровня взрывопожароопасности процесса предусмотрены следующие мероприятия:
- процесс осуществляется по непрерывной схеме и в герметичных аппаратах;
- все стадии технологического процесса непрерывны и склонны к устойчивому протеканию;
- вся технологическая
схема установки разделена на
6 технологических блоков (№ 1, 2/1,
2/2, 2/3, 3, 4), которые, в случае
- при соблюдении правил
эксплуатации процесс не
- для перемещения
- применяемые, обращающиеся
и получаемые вещества не
- не применяются продукты
и теплоносители,
- на установке отсутствуют
открытые поверхности
- контроль и управление
процессом осуществляется
- по параметрам, определяющим взрывопожароопасность процесса, предусмотрена противоаварийная автоматическая система защиты, предупредительная сигнализация и аварийная система блокировок;
- на аппаратах, где возможно повышение давления до максимально допустимого, установлены предохранительные клапаны;
- предусмотрены система
аварийного освобождения
- на наружной установке,
где расположено оборудование, в
котором обращаются
Согласно ГОСТ 12.1.044-91 на установке
предусмотрены следующие
- первичные средства
- стационарная система пенотушения открытой насосной;
- водяная оросительная система колонных аппаратов;
- лафетные стволы на лафетных вышках (4 вышки);
- пожарные краны в помещении компрессорной.
- для печей предусмотрена система паротушения, а вокруг печей предусмотрена паровая завеса, включающаяся автоматически по сигналу загазованности на наружной установке.
Для предотвращения несчастных случаев, заболеваний и отравлений, связанных с производством, весь обслуживающий персонал установки обеспечивается следующими средствами защиты:
- специальной одеждой
– хлопчатобумажные костюмы,
рукавицы комбинированные,
- резиновый фартук, резиновые
перчатки для работы с
- фильтрующими противогазами
марки «БКФ», защищающими
- шланговыми противогазами
ПШ-1, ПШ-2 отвечающие требованиям
ГОСТ 12.4.041-2001, комплектом масок и
спасательным поясом с
- аварийным запасом фильтрующих противогазов;
- медицинской аптечкой
с необходимым набором
В качестве защитной одежды на установке согласно ГОСТ 12.4.016-75 и ГОСТ 12.4.017-76 предусматривается комплект специальной одежды: х/б костюм, кожаные ботинки, рукавицы, куртка и брюки ватные.
Для предотвращения возникновения
зарядов статического электричества,
защиты от вторичных проявлений молнии
предусмотрены следующие
- каждая система аппаратов,
трубопроводов, представляет
- для защиты зданий и сооружений от прямых ударов молний, соглас-но РД 34.21.122–87, а также ПУЭ аппараты с толщиной стенок более 4 мм присоединены к защитному заземлению не более 4 Ом;
- для защиты людей от поражения электрическим током на установке, в соответствии с ПУЭ, предусмотрено защитное заземление и зануление электрооборудования;
- при вводе жидкости в аппараты по возможности исключено разбрызгивание (ввод под слой жидкости);
- скорость движения продуктов в аппаратах и трубопроводах не превышает значений, предусмотренных проектом.
- при нормальной эксплуатации
установки все оборудование и
коммуникации находятся при
Список использованных источников
1. Ахметов С.А. Технология глубокой переработки нефти и газа. - Уфа: Гилем, 2002. - 669 с.
2. Черножуков Н.И. Очистка и разделение нефтяного сырья, производство товарных нефтепродуктов. – М.: Химия, 1978. – 423с.
3. Магарил Р.З. Теоретические основы химических процессов переработки нефти. - М.: Химия, 1976. – 311 с.
4. Аспель Н.Б., Демкина Г.Г. Гидроочистка моторных топлив. – М.: Химия, 1977.- 158 с.
5. Танатаров М.А., Ахметшина М.Н. и др. Технологические расчеты установок переработки нефти.- М.: Химия, 1987г. – 351 с.
6. Багиров И.Т. Современные установки первичной переработки нефти.- М.: Химия, 1974. - 237 с.
7. Ластовкин Г.А. Справочник нефтепереработчика. - М., 1986. - 649 с.
8. Эрих В.Н. Химия и технология нефти и газа. - М.: Химия, 1977. - 424 с.
9. Каминский Э.Ф. Глубокая переработка нефти. - Уфа, 2001. - 385 с.