Алюминий и его сплавы

Автор: Пользователь скрыл имя, 20 Марта 2012 в 10:29, реферат

Описание работы

Алюминий – светло-серебристый металл, имеющий кристаллическую решетку гранецентрированного куба с периодом 4,0413 Å. Не испытывает полиморфных превращений. Алюминий – легкий металл, его удельный вес 2,703 г/см3 при 20 ˚С. В связи с этим алюминий является основой сплавов для легких конструкций, например в авиационной технике. Алюминий обладает высокой электропроводностью (65% от меди), поэтому алюминий в большом объеме используется в качестве проводниковых материалов в электротехнике. Чистый алюминий обладает высокой коррозионной стойкостью в связи с образованием на его поверхности стойкой и плотной окисной пленки Al2O3.

Работа содержит 1 файл

алюминий и его сплавы.doc

— 131.50 Кб (Скачать)

Сплавы системы Al-Mn не являются двойными, примеси железа и кремния, неизбежные в алюминии, делают его многокомпонентным. Эти примеси сильно уменьшают растворимость марганца в алюминии. Железо связывается с марганцем с образованием грубых первичных кристаллов тройной фазы Al6(MnFe), которые резко ухудшают литейные и механические свойства сплавов, затрудняют их обработку давлением. При наличии кремния в сплавах образуется тройная фаза Т(Al10Mn2Si), кристаллизующаяся в виде мелких кристаллов кубической формы. С увеличением содержания железа и кремния повышается пластичность (таблица 4), и уменьшается размер зерна.


Таблица 4 - Типичные механические свойства термически неупрочняемых сплавов

Марка сплава

Состояние

σВ, МПа

σ0,2, МПа

δ,%

HB, МПа

АМц

отожженное

130

50

23

300

полунагартованное

160

130

10

400

АМг2М

отжиг

200

100

23

450

АМг2П

неполный отжиг

250

200

10

600

АМг6М

отжиг

340

170

20

700

АМг6Н

нагартованное

390

300

10

-

 

Полуфабрикаты из сплавов системы Al-Mg (АМг1, АМг2, АМг3, АМг4, АМг5, АМг6) имеют относительно небольшие прочностные характеристики, но высокую пластичность, а также отличаются высокой коррозионной стойкостью и хорошей свариваемостью аргонодуговым способом.

Основные компоненты сплавов этой системы – магний и марганец. В виде небольших добавок используют титан, цирконий, хром, кремний, бериллий. Растворимость магния в алюминии довольно высока и составляет 17,4%Mg при 450°С и около 1,4%Mg при комнатной температуре. Увеличение содержания магния приводит к повышению предела прочности и текучести. Относительное удлинение снижается с увеличением содержания магния до 4%, а затем медленно повышается. Присутствие магния до 4,5% сохраняет высокую коррозионную стойкость сплавов после любых нагревов.

Присадки марганца и хрома повышают прочностные характеристики основного материала и сварных соединений, а также увеличивается сопротивляемость материала к образованию горячих трещин при сварке и коррозионному разрушению под напряжением. Титан и цирконий измельчают литую структуру сплава, способствуя образованию более плотного сварного шва. Бериллий предохраняет сплавы от окисления их в процессе плавки, литья, сварки, а также при технологических нагревах под прокатку, штамповку, прессование и др. Кремний в количествах от 0,2 до 2% снижает механические свойства, в особенности относительное удлинение, а также уменьшает коррозионную стойкость сплава. Кремний снижает пластичность при прокатке. Примеси железа и кремния отрицательно действуют на свойства сплавов, поэтому желательно, чтобы их содержание не превышало 0,5-0,6%.

Двойные сплавы Al-Cu в практике не нашли широкого применения по причине сравнительно низкой прочности. Однако рассмотрение этих сплавов является необходимым, поскольку на них впервые были обнаружены эффекты упрочнения при старении после закалки. Теоретические основы этих процессов рассмотрено нами выше (лекция 5).

После отжига структура большинства промышленных сплавов представляет собой сравнительно равноосные зерна -твердого раствора с выделением избыточных фаз по границам зерен. Природа этих избыточных фаз зависит от химического состава сплавов. В двойных Al-Cu – сплавах избыточной фазой является -фаза (соединение CuAl2). В сплавах системы Al-Mg-Si, избыточной фазой является Mg2Si. Высокую прочность и пластичность термически упрочняемые алюминиевые сплавы приобретают в результате закалки и последующего естественного или искусственного старения. Прочность сплавов после закалки и старения увеличивается по мере усложнения состава упрочняющей фазы. Выделение только  фазы в сплавах Al-Cu приводит к сравнительно небольшому упрочнению. В результате закалки и старения в двойных Al-Cu сплавах удается получить в  300-350 МПа. В дуралюмине Д1, где наряду с  фазой, упрочняющей является и S фаза, предел прочности повышается до 420-440 МПа.

В дуралюмине Д16, где основной упрочняющей фазой является S фаза, а роль -фазы невелика, упрочнение достигает значений в  450 МПа. Выделение упрочняющей T-фазы в высокопрочных алюминиевых сплавах типа В95 приводит к повышению в до 600 МПа при   12%.

Сплавы системы Al-Cu-Mg (дуралюмины) относятся к группе термически упрочняемых деформируемых сплавов. Они отличаются высокой прочностью в сочетании с высокой пластичностью, имеют повышенную жаропрочность, поэтому они применяются для работы при повышенных температурах. Дуралюмины склонны к образованию кристаллизационных трещин и поэтому относятся к категории несваривающихся плавлением сплавов, а также имеют пониженную коррозионную стойкость.

Классическим дуралюмином является сплав Д1. Сплав Д16 считается дуралюмином повышенной прочности. Сплавы Д19, ВАД1 и ВД17 являются дуралюминами повышенной жаропрочности, а Д18, В65 с пониженным содержанием легирующих компонентов являются сплавами повышенной пластичности (таблица 5).

В сплавах типа дуралюмин, (на основе системы Al-Cu-Mg) избыточными фазами являются -фаза (CuAl2) и S-фаза (Al2CuMg). В данной системе возможно выделение T-фазы (CuMg4Al6), однако содержание меди и магния в промышленных сплавах Al таково, что T-фаза не выделяется.

Помимо меди и магния, в дуралюминах всегда содержится марганец и небольшое количество примесей. Марганец находится в дуралюминах в виде дисперсных частиц фазы Т (Al12Mn2Cu), которые положительно влияют на их свойства: повышается температура рекристаллизации, измельчается структура холоднодеформированного материала, повышаются прочностные свойства при комнатной температуре, а также значительно увеличивается жаропрочность.

Кремний (до 0,05%) в сплавах с содержанием магния до 1%, повышает прочностные характеристики при искусственном старении; при более высоком содержании магния (1,5%) прочность понижается. Кроме того, кремний увеличивает склонность к трещинообразованию при литье и сварке. Железо понижает пластичность и способствует растрескиванию полуфабрикатов при деформации. Небольшое количество железа (0,2-0,25%) в присутствии кремния не оказывает отрицательного влияния на механические свойства сплавов, значительно уменьшает склонность к трещинообразованию при литье и сварке.


Таблица 5 - Типичные механические свойства термически упрочняемых сплавов после закалки и старения

Сплав

Полуфабрикаты

σВ, МПа

σ0,2, МПа

δ,%

Д1

Листы

400

240

20

 

Прессованные прутки и профили

480

320

14

Д16

Листы, плиты

440

330

18

 

Прессованные прутки и профили

530

400

11

Д19

Листы

425

310

18

АК4-1

Профиль прессованный

420

350

12

После естественного старения

АВ

Листы

240

160

20

Прессованные профили

 

Прессованные профили

260

200

15

АД31

170

90

22

АД33

250

180

14

АД35

270

200

12

После искусственного старения

АВ

Листы

330

250

14

Прессованные профили

 

Прессованные профили

380

300

12

АД31

240

190

12

АД33

340

280

11

АД35

360

290

11

АК6

Долевое направление испытаний

400

290

12

Поперечное

370

280

10

Высотное

360

250

8

АК8

Долевое направление испытаний

480

380

9

Поперечное

410

300

7

Высотное

380

280

4

В95

Листы, плиты

540

470

10

Прессованные профили

600

560

8

В96Ц

Штамповки, трубы

670

640

7

В93

Штамповки

500

470

8

 

Никель уменьшает пластичность и прочность, улучшает твердость и прочность при повышенных температурах и понижает коэффициент линейного расширения.

Цинк для дуралюминов является вредной примесью, так как увеличивает склонность к трещинообразованию при литье и сварке. Бериллий в количестве порядка 0,005% предохраняет сплавы от окисления при литье и сварке. Литий сильно повышает скорость окисления расплавленного алюминия, увеличивает прочность при повышенных температурах, понижает плотность и увеличивает модуль упругости. Титан применяется для измельчения зерна литого металла, а также значительно уменьшает склонность к трещинообразованию. Небольшое количество бора (0,005-0,01%) измельчает зерно алюминия и его сплавов. Эффект модифицирования увеличивается в присутствии небольших количеств титана.

Сплавы системы Al-Cu-Mg с добавками железа и никеля (АК2, АК4, АК4-1) по назначению относятся к группе жаропрочных материалов. По своему химическому и фазовому составу они весьма близки к сплавам типа дуралюмин. Основными упрочняющими фазами при термической обработке этих сплавов, также как и у дуралюминов, служат фазы S и θ. Отличие заключается в том, что вместо марганца в качестве легирующих элементов в значительных количествах содержится железо, никель и кремний. Сплавы менее легированы по меди.

При добавке железа к сплаву 2%Al; 1,6%Mg прочностные свойства резко снижаются, железо образует с медью нерастворимое интерметаллическое соединение Cu2FeAl7, снижающее концентрацию меди в твердом растворе, тем самым уменьшая эффект упрочнения. Аналогичным образом влияют добавки никеля, который образует практически нерастворимую тройную с медью фазу Al6Cu3Ni. Однако при одновременном введении железа (до 2,5%) и никеля (1,6%) наблюдается резкое повышение прочностных свойств в закаленном и состаренном состоянии, при этом максимальные значения достигаются при содержании железа 1,6%. При других концентрациях железа и никеля максимальные значения прочностных свойств, обнаруживаются при соотношении железа и никеля, равном примерно 1:1. Железо и никель образуют тройное соединение FeNiAl9, которое уменьшает возможность образования нерастворимых соединений AlCuFe и AlCuNi, что увеличивает концентрацию меди в твердом растворе. С увеличением содержания фазы FeNiAl9 в сплаве повышается эффект термической обработки. Фаза FeNiAl9 улучшает обычные характеристики механических свойств и жаропрочность сплава.

Сплавы системы Al-Mg-Si (АД31, АД33, АД35, АВ) относятся к группе материалов обладающих повышенной пластичностью. Эти сплавы широко применяют в качестве конструкционных и декоративных материалов, которые, наряду с хорошей пластичностью, обладают комплексом ценных свойств, включая высокую коррозионную стойкость, технологичность, способность подвергаться цветному анодированию и эмалированию.

Эти сплавы легированы в меньшей степени, чем дуралюмины; суммарное содержание легирующих элементов в этих сплавах колеблется в пределах от 1 до 2%. Упрочняющей фазой во всех сплавах является Mg2Si, поэтому степень упрочнения при старении находится в прямой зависимости от количества этой фазы. С увеличением содержания кремния до 1,6%, при постоянном содержании магния, предел прочности растет, а затем практически не изменяется или несколько снижается к 2%Si.

С увеличением концентрации магния, при постоянном содержании кремния, предел прочности растет и достигает максимума при 1,2-1,4%, а затем снижается к 2%Mg. Повышение содержания магния и кремния приводит к измельчению структуры. С повышением содержания кремния улучшаются литейные свойства и свариваемость сплавов. Коррозионная стойкость снижается с ростом содержания фазы Mg2Si и Si.

Сплавы системы Al-Mg-Si-Cu (АК6, АК6-1, АК8) являются авиалями повышенной прочности и относятся к группе ковочных материалов. Они отличаются от обычных авиалей повышенным содержанием меди. Упрочняющими фазами являются фазы W(AlCu4Mg5Si4), CuAl2, Mg2Si. Увеличение содержания меди монотонно повышает предел прочности при комнатной и повышенных температурах, пластичность достигает максимума при концентрации меди 2,2% (см. таблицу 5).

Сплавы системы Al-Zn-Mg и Al-Zn-Mg-Cu (В95, В96, В96ц, В93) относятся к группе высокопрочных сплавов. Характерным для данного класса сплавов является образование сложной по составу T-фазы. Выделение ее по границам зерен проводит к снижению их механических свойств (к охрупчиванию сплавов).

Характерная особенность сплавов – высокий предел текучести, близкий по своему значению к пределу прочности материала, и пониженная пластичность (см. таблицу 5). Сплавы отличаются чувствительностью к надрезам и перекосам, характеризуются пониженной выносливостью при повторно-статических нагружениях, а также чувствительны к коррозионному растрескиванию под напряжением. Уменьшение содержания примесей железа и кремния способствует повышению пластичности, ударной вязкости, статической выносливости, а также резко снижает чувствительность к надрезу образцов при перекосах. По мере увеличения содержания магния, цинка и меди в сплавах, предел прочности сплавов Al-Zn-Mg в отожженном состоянии непрерывно повышается. Хром, в этих сплавах, эффективно повышает стойкость сплавов против коррозии под напряжением. Цирконий при кристаллизации образует с алюминием пересыщенный твердый раствор, который распадается, при последующей обработке слитка, с выделением дисперсных интерметаллидов. Цирконий более интенсивно, чем другие переходные металлы, повышает температуру рекристаллизации, приводит к сохранению нерекристаллизованной структуры в горячедеформированных изделиях после термообработки и тем самым обусловливает значительное структурное упрочнение. Добавки циркония препятствуют образованию крупнозернистых структур.

Информация о работе Алюминий и его сплавы