Автор: Пользователь скрыл имя, 07 Июня 2013 в 15:47, дипломная работа
В связи с сокращением добычи угля снизились производственные мощности угледобывающего предприятия, что привело к сокращению в потребности пара. Это вызвало реконструкцию котельной, которая заключается в использовании паровых котлов КЕ-25 не только для производственных целей, но и для производства горячей воды на отопление, вентиляцию и горячее водоснабжение в специальных теплообменниках.
Введение
1. Общая часть
1.1 Характеристика объекта
1.2 Определение количества потребителей теплоты. График годового расхода теплоты
1.3 Система и принципиальная схема теплоснабжения
1.4 Расчет тепловой схемы котельной
1.5 Выбор оборудования котельной
1.6 Подбор и размещение основного и вспомогательного оборудования
1.7 Тепловой расчет котлоагрегата
1.8.Аэродинамический расчет теплодутьевого тракта
Спецчасть.
2. Разработка блочной системы подогревателей.
2.1 Исходные данные водоснабжения
2.2 Выбор схемы приготовления воды
2.3 Расчет оборудования водоподогревательной установки
2.4 Расчет сетевой установки
3. Технико-экономическая часть
3.1 Исходные данные
3.2 Расчет договорной стоимости строительно-монтажных работ
3.3 Определение годовых эксплуатационных расходов
3.4 Определение годового экономического эффекта
4. ТМЗР
Монтаж секционных водонагревателей
5. Автоматика
Автоматическое регулирование и теплотехнический контроль котлоагрегата КЕ-25-14с
6. Охрана труда в строительстве
6.1 Охрана труда при монтаже энергетического и технологического оборудования в котельной
6.2 Анализ и предотвращение появления потенциальных опасностей
6.3 Расчет стропов
7. Организация, планирование и управление строительством
7.1 Монтаж котлоагрегатов
7.2 Условия начала производства работ
7.3 Производственная калькуляция затрат труда и заработной платы
7.4 Расчет параметров календарного плана
7.5 Организация стройгенплана
7.6 Расчет технико-экономических показателей
8. Организация эксплуатации и энергоресурсосбережения
Список использованной литературы
Содержание
Введение
1. Общая часть
1.1 Характеристика объекта
1.2 Определение количества потребителей теплоты. График годового расхода теплоты
1.3 Система и принципиальная схема теплоснабжения
1.4 Расчет тепловой схемы котельной
1.5 Выбор оборудования котельной
1.6 Подбор и размещение основного и вспомогательного оборудования
1.7 Тепловой расчет котлоагрегата
1.8.Аэродинамический расчет теплодутьевого тракта
Спецчасть.
2. Разработка блочной системы подогревателей.
2.1 Исходные данные водоснабжения
2.2 Выбор схемы приготовления воды
2.3 Расчет оборудования водоподогревательной установки
2.4 Расчет сетевой установки
3. Технико-экономическая часть
3.1 Исходные данные
3.2 Расчет договорной
стоимости строительно-
3.3 Определение годовых эксплуатационных расходов
3.4 Определение годового экономического эффекта
4. ТМЗР
Монтаж секционных водонагревателей
5. Автоматика
Автоматическое регулирование и теплотехнический контроль котлоагрегата КЕ-25-14с
6. Охрана труда в строительстве
6.1 Охрана труда при монтаже энергетического и технологического оборудования в котельной
6.2 Анализ и предотвращение
появления потенциальных
6.3 Расчет стропов
7. Организация, планирование и управление строительством
7.1 Монтаж котлоагрегатов
7.2 Условия начала производства работ
7.3 Производственная калькуляция затрат труда и заработной платы
7.4 Расчет параметров календарного плана
7.5 Организация стройгенплана
7.6 Расчет технико-экономических показателей
8. Организация эксплуатации и энергоресурсосбережения
Список использованной литературы
В наше сложное время, с больной кризисной экономикой строительство новых промышленных объектов сопряжено с большими трудностями, если вообще строительство возможно. Но в любое время, при любой экономической ситуации существует целый ряд отраслей промышленности без развития которых невозможно нормальное функционирование народного хозяйства, невозможно обеспечение необходимых санитарно-гигиенических условий населения. К таким отраслям и относится энергетика, которая обеспечивает комфортные условия жизнедеятельности населения как в быту так и на производстве.
Последние исследования показали экономическую целесообразность сохранения значительной доли участия крупных отопительных котельных установок в покрытии общего потребления тепловой энергии.
Наряду с крупными производственными, производственно-отопительными котельными мощностью в сотни тонн пара в час или сотни МВт тепловой нагрузки установлены большое количество котельных агрегатами до 1 мвт и работающих почти на всех видах топлива.
Однако как раз с топливом и существует самая большая проблема. За жидкое и газообразное топливо, у потребителей часто не хватает средств расплатиться. Поэтому и необходимо использовать местные ресурсы.
В данном дипломном проекте разрабатывается реконструкция производственно-отопительной котельной завода РКК «Энергия», которая использует в качестве топлива местный добываемый уголь. В перспективе предусматривается перевод котлоагрегатов на сжигание газа от дегазации газовых выбросов шахты, которая находится на территории обогатительной фабрики. В существующей котельной установлены два паровых котлоагрегата КЕ-25-14, служившие для снабжения паром предприятия завода РКК «Энергия», и водогрейные котлы ТВГ-8 (2 котла) для отопления, вентиляции и горячего водоснабжения административно-бытовых зданий и жилого поселка.
В связи с сокращением добычи угля снизились производственные мощности угледобывающего предприятия, что привело к сокращению в потребности пара. Это вызвало реконструкцию котельной, которая заключается в использовании паровых котлов КЕ-25 не только для производственных целей, но и для производства горячей воды на отопление, вентиляцию и горячее водоснабжение в специальных теплообменниках.
Проектируемая котельная находится на территории завода РКК «Энергия»
Планировка, размещение зданий и сооружений на промплощадке обогатительной фабрики выполнены в соответствии с требованиями СНиП.
Размер территории промплощадки в границах ограждений - 12,66 га, площадь застройки 52194 м2.
Транспортная сеть района строительства представлена железными дорогами общего пользования и автодорогами местного значения.
Рельеф местности равнинный, с небольшими подъемами, в почве преобладает суглинок.
Источником водоснабжения является фильтровальная станция и канал Северский Донец-Донбасс. Предусмотрено дублирование водовода.
Расчетные расходы теплоты
промышленными предприятиями
Годовой график расхода теплоты строится в зависимости от продолжительности стояния наружных температур, которая отражена в таблице 1.2. данного дипломного проекта.
Максимальная ордината годового графика расхода теплоты соответствует расходу тепла при наружной температуре воздуха –23 °С.
Площадь, ограниченная кривой и осями ординат, дает суммарный расход теплоты за отопительныф период, а прямоугольник в правой части графика - расход теплоты на горячее водоснабжение в летнее время.
На основании данных таблицы 1.2. расчитываем расходы теплоты по потребителям для 4-х режимов: максимально-зимний (tр. о. =-23°C;); при средней температуре наружного воздуха за отопительный период; при температуре наружного воздуха +8°C; в летний период.
Расчет ведем в таблице 1.3. по формулам:
- тепловая нагрузка на отопление и вентиляцию, МВт
QОВ=QРОВ*(tвн-tн)/(tвн-tр.о.)
- тепловая нагрузка на горячее водоснабжение в летний период, МВт
QЛГВ=QРГВ*(tг-tхл)/(tг-tхз)*b
где: QРОВ- расчетная зимняя тепловая нагрузка на отопление и вентиляцию при расчетной температуре наружного воздуха для проектирования системы отопления. Принимаем по табл. 1.2.
tВН - внутренняя температура воздуха в отапливаемом помещении, tВН =18°С
QРГВ - расчетная зимняя тепловая нагрузка на горячее водоснабжение ( табл. 1.2);
tн- текущая температура наружного воздуха ,°С;
tр.о.- расчетно отопительная температура наружного воздуха,
tг- температура горячей водя в системе горячего водоснабжения,tг=65°С
tхл , tхз - температура холодной воды летом и зимой,tхл =15°С,tхз =5°С;
b - поправочный коэффициент на летний период, b=0,85
Таблица 1.2
Тепловые нагрузки
Вид тепловой |
Расход тепловой нагрузки, МВт |
Характеристика | |
Нагрузки |
Зимой |
Летом |
Теплоносителя |
1.Отопление и вентиляция |
15,86 |
- |
Вода 150/70 °С Пар Р=1,4 МПа |
2.Горячее водоснабжение |
1,36 |
По расчету |
|
3.Технологические нужды |
11,69 |
1,24 |
Пар Р=1,44МПа |
ВСЕГО |
28,91 |
1,24 |
- |
Таблица 1.3.
Расчет годовых тепловых нагрузок
№ п/п |
Вид нагрузки |
Обозначение |
Значение тепловой нагрузки при температуре МВт | |||
tр.о=-23 °С |
tсро.п.=-1,8°С |
tр.о=8°С |
Летний | |||
1. |
Отопление и вентиляция |
QОВ |
15,86 |
7,66 |
3,87 |
- |
2. |
Горячее водоснабжение |
QГВ |
1,36 |
1,36 |
1,36 |
0,963 |
3. |
Итого |
QОВ+ГВ |
17,22 |
9,02 |
5,23 |
0,963 |
4. |
Технология |
QТЕХ |
11,69 |
11,69 |
1,24 |
1,24 |
5. |
Всего |
Q |
28,91 |
20,71 |
6,47 |
2,203 |
По данным табл. 1.1. и 1.3. строим график годовых расходов тепловой нагрузки, представленный на рис .1.1.
Источником теплоснабжения является реконструируемая котельная шахты. Теплоноситель - пар и перегретая вода. Питьевая вода используется только для систем горячего водоснабжения. Для технологических нужд используется пар Р=0,6МПа. Для приготовления перегретой воды с температурой 150-70°С предусматривается сетевая установка, для приготовления воды с t=65°С - установка горячего водоснабжения.
Система теплоснабжения - закрытая. Вследствии отсутствия непосредственного водоразбора и незначительной утечки теплоносителя через неплотности соединений труб и оборудования закрытые системы отличаются высоким постоянством количества и качества циркулируемой в ней сетевой воды.
В закрытых водяных системах теплоснабжения воду из тепловых сетей используют только как греющую среду для нагревания в подогревателях поверхностного типа водопроводной воды, поступающей затем в местную систему горячего водоснабжения. В открытых водяных системах теплоснабжения горячая вода к водоразборным приборам местной системы горячего водоснабжения поступает непосредственно из тепловых сетей.
На промплощадке трубопроводы теплоснабжения прокладываются по мостам и галереям и частично в непроходных лотковых каналах типа Кл. Трубопроводы прокладывают с устройством компенсации за счет углов поворотов трассы и П-образных компенсаторов.
Трубопроводы приняты из стальных электросварных труб с устройством теплоизоляции.
На листе 1 графической части дипломного проекта показан генплан промплощадкп с разводкой тепловых сетей к объектам потребления .
Принципиальная тепловая схема характеризует сущность основного технологического процесса преобразования энергии и использования в установке теплоты рабочего тела. Она представляет собой условное графическое изображение основного и вспомогательного оборудования, объединенного линиями трубопроводов рабочего тела в соответствии с последовательностью его движения в установке.
Основной целью расчета тепловой схемы котельной является:
- определение общих тепловых нагрузок, состоящих из внешних нагрузок и расходов тепла на собственные нужды, и распределением этих нагрузок между водогрейной и паровой частями котельной для обоснования выбора основного оборудования;
- определение всех
тепловых и массовых потоков,
необходимых для выбора
- определение исходных
данных для дальнейших технико-
Расчет тепловой схемы позволяет определить суммарную теплопроизводительность котельной установки при нескольких режимах ее работы.
Тепловая схема котельной приведена на листе 2 графической части дипломного проекта.
Исходные данные для расчета тепловой схемы котельной приведены в таблице 1.4, а сам расчет тепловой схемы приведен в таблице 1.5.
Таблица 1.4
Исходные данные для
расчета тепловой схемы отопительно-
№№ пп |
Наименование |
Обоз- |
Ед. |
Расчетные режимы |
Примечание | |||
позиц. исход. данных |
величин |
начение |
изм. |
Максимально зимний |
При средней температуре наиболее холодного периода |
При темпера туре наружного воздуха в точке излома температурного графика |
Летний |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
01 |
Температура наружного воздуха |
tн |
°C |
-24 |
-10 |
- |
- |
I |
02 |
Температура воздуха внутри отапливаемых зданий |
tвн |
°C |
18 |
18 |
18 |
18 |
|
03 |
Максимальная температура |
t1макс |
°C |
150 |
- |
- |
- |
|
04 |
Минимальная температура прямой сетевой воды в точке излома температурного графика |
t1.изл |
°C |
- |
- |
70 |
- |
|
05 |
Максимальная температура обрат |
t2макс |
°C |
70 |
- |
- |
- |
|
06 |
Температура деаэрированной воды после деаэратора |
Tд |
°C |
104,8 |
104,8 |
104,8 |
104,8 |
|
07 |
Энтальпия деаэрированной воды |
iд |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
Из таблиц насыщенного пара и воды при давлении 1.2Мпа |
08 |
Температура сырой воды на входе в котельную |
T1 |
°C |
5 |
5 |
5 |
15 |
|
09 |
Температура сырой воды перед химводоочисткой |
TЗ |
°C |
25 |
25 |
25 |
25 |
|
10 |
Удельный объем воды в системе тепловодоснабжения в т. на 1 МВт суммарного отпуска тепла на отопление, вентиляцию и горячее водоснабжение |
qсист |
Т/ МВт |
30,1 |
30,1 |
30,1 |
30,1 |
Для промышленных предприятий |
Параметры пара, вырабатываемого котлами (до редукционной установки) |
||||||||
11 |
Давление |
P1 |
МПа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
12 |
Температура |
t1 |
°C |
195 |
195 |
195 |
195 |
щенного пара и |
13 |
Энтальпия |
i1 |
КДж/кг |
2788,4 |
2788,4 |
2788,4 |
2788,4 |
воды при давлении 1,4 МПа |
Параметры пара после редукционной установки: |
||||||||
14 |
Давление |
P2 |
МПа |
0,7 |
0,7 |
0,7 |
0,7 |
Из таблиц насы- |
15 |
Температура |
t2 |
°C |
165 |
165 |
165 |
165 |
щенного пара и |
16 |
Энтальпия |
i2 |
КДж/кг |
2763 |
2763 |
2763 |
2763 |
воды при давлении 0,7 МПа |
Параметры пара, образующегося в сепараторе непрерывной продукции: |
||||||||
17 |
Давление |
P3 |
МПа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
18 |
Температура |
t3 |
°C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
19 |
Энтальпия |
i3 |
КДж/кг |
2700 |
2700 |
2700 |
2700 |
воды при давлении 0,17 Мпа |
Параметры пара, поступающего в охладитель выпара из деаэратора: |
||||||||
20 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
21 |
Температура |
t4 |
°C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
22 |
Энтальпия |
i4 |
КДж/кг |
2684 |
2684 |
2684 |
2684 |
воды при давлении 0,12 Мпа |
Параметры конденсатора после охладителя выпара: |
||||||||
23 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
24 |
Температура |
t4 |
°C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
25 |
Энтальпия |
i5 |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
воды при давлении 0,12 Мпа |
Параметры продувочной воды на входе в сепаратор непрерывной продувки: |
||||||||
26 |
Давление |
P1 |
Мпа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
27 |
Температура |
t1 |
°C |
195 |
195 |
195 |
195 |
щенного пара и |
28 |
Энтальпия |
i7 |
КДж/кг |
830,1 |
830,1 |
830,1 |
830,1 |
воды при давлении 1,4 Мпа |
Параметры продувочной воды на выходе из сепаратора непрерывной продувки: |
||||||||
29 |
Давление |
P3 |
Мпа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
30 |
Температура |
t3 |
°C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
31 |
Энтальпия |
i8 |
КДж/кг |
483,2 |
483,2 |
483,2 |
483,2 |
воды при давлении 0,17 Мпа |
32 |
Температура продувочной воды после охлаждения продувочной воды |
tпр |
°C |
40 |
40 |
40 |
40 |
|
33 |
Температура конденсата от блока подогревателей сетевой воды |
tкб |
°C |
80 |
80 |
80 |
80 |
Принимается |
34 |
Температура конденсата после пароводяного подогревателя сырой воды |
t2 |
°C |
165 |
165 |
165 |
165 |
Принимается |
35 |
Энтальпия конденсата после пароводяного подогревателя сырой воды |
i6 |
КДж/кг |
697,1 |
697,1 |
697,1 |
697,1 |
Из таблиц насыщенного пара и воды при давлении 0,7 Мпа |
36 |
Температура конденсата, возвращаемого с производства |
tкп |
°C |
80 |
80 |
80 |
80 |
|
37 |
Величина непрерывной продувки |
П |
% |
4,6 |
4,6 |
4,6 |
4,6 |
Принимается из расчета химводоочистки |
38 |
Удельные потери пара с выпаром из деаэратора питательной воды в т на 1т деаэрированной воды |
dвып |
т/т |
0,002 |
0,002 |
0,002 |
0,002 |
Принимается по рекомендациям ЦКТИ |
39 |
Коэффициент собственных нужд химводоочистки |
Кснхво |
- |
1,2 |
1,2 |
1,2 |
1,2 |
|
40 |
Коэффициент внутрикотельных потерь пара |
Кпот |
- |
0,02 |
0,02 |
0,02 |
0,02 |
Принимается |
41 |
Расчетный отпуск тепла из котельной на отопление и вентиляцию |
Qмаксов |
МВт |
15,86 |
- |
- |
- |
Табл. 1.2. |
42 |
Расчетный отпуск тепла на горячее водоснабжение за сутки наибольшего водопотребления |
Qсргв |
МВт |
1,36 |
- |
- |
- |
Табл. 1.2. |
43 |
Отпуск тепла производственным потребителям в виде пара |
Дотр |
кг/с |
4,98 |
4,98 |
4,98 |
0,53 |
|
44 |
Возврат конденсата от производственных потребителей (80%) |
Gпотр |
=кг/с |
3,98 |
3,98 |
3,98 |
0,42 |
=0,8 |
Информация о работе Реконструкция производственно-отопительной котельной завода РКК «Энергия»