Аккумуляторы тепловой энергии

Автор: Пользователь скрыл имя, 08 Декабря 2011 в 22:42, реферат

Описание работы

Аккумулятором тепла называется устройство (или совокупность устройств), обеспечивающее обратимые процессы накопления, хранения и выработки тепловой энергии в соответствии с требованиями потребителя.
Процессы аккумулирования тепла происходят путем изменения физических параметров теплоаккумулирующего материала и за счет использования энергии связи атомов и молекул веществ.

Работа содержит 1 файл

Аккумуляторы.doc

— 221.00 Кб (Скачать)

Министерство  Аграрной Политики Украины

Таврический Государственный  Агротехнологический  Университет 
 
 
 

Реферат по теме:

Аккумуляторы  тепловой энергии 
 
 
 

Выполнил:

Проверил: 
 
 
 
 
 

Мелитополь, 2011

Виды  аккумуляторов

Аккумулятором тепла называется устройство (или совокупность устройств), обеспечивающее обратимые процессы накопления, хранения и выработки тепловой энергии в соответствии с требованиями потребителя.

Процессы аккумулирования  тепла происходят путем изменения  физических параметров теплоаккумулирующего материала и за счет использования энергии связи атомов и молекул веществ.

Исходя из первого  закона термодинамики для незамкнутой  системы постоянного химического  состава характеристики аккумуляторов  тепла зависят от изменения массы, объема, давления, энтальпии и внутренней энергии материала, а также различных их комбинаций.

В зависимости  от технической реализации используется прямее аккумулирование тепла, когда  аккумулирующий материал является одновременно и теплоносителем, косвенное аккумулирование  — при различных теплоаккумулирующих и теплопередающих средах, а также различные виды симбиоза названных случаев.

Изменение энтальпии  теплоаккумулирующего материала (ТАМ) может происходить как с изменением его температуры, так и без  такового — в процессе фазовых превращений (например, твердое — твердое, твердое — жидкое, жидкое — пар).

Тепловые аккумуляторы реализуют, как правило, несколько  элементарных процессов.

На современном  этапе развития науки и техники  существует возможность реализации практически любого известного принципа аккумуляции тепла. Целесообразность использования каждого принципа определяется наличием положительного эффекта, в первую очередь, экономического, достижение которого возможно при минимальной стоимости аккумулятора. Она определяется при прочих равных условиях массой и объемом теплоаккумулирующего материала, необходимого для обеспечения заданных параметров процесса.

В реальном процессе аккумулирования тепла плотность  запасаемой энергии оказывается  существенно ниже теоретического значения вследствие потерь тепла, выравнивания поля температур, потерь при заряде и разряде. Отношение реального и теоретического значений плотности запасаемой энергии и определяет эффективность теплового аккумулятора.Одним из важнейших показателей, определяющих возможность и целесообразность аккумулирования тепла, является способность выделять энергию в количествах, необходимых потребителю. При прямом аккумулировании тепла это достигается практически всегда. Показатели таких аккумуляторов слабо зависят от вырабатываемой мощности, которая определяется расходом ТАМ и ограничивается только конструктивными и прочностными требованиями.

При косвенном  аккумулировании повышение вырабатываемой мощности увеличивает градиент температур и ТАМ, что приводит либо к увеличению поверхности теплообмена, либо к неполному использованию запаса тепла. В любом случае это снижает эффективность аккумулирования.

В настоящее  время известно большое многообразие видов и конструкций тепловых аккумуляторов с зернистым ТАМ, обусловленное широким спектром областей применения аккумуляторов тепла. Множество методов и способов аккумулирования приводит к различным техническим и конструктивным решениям (рис. 1):

- тепловые аккумуляторы  с твердым ТАМ;

- тепловые аккумуляторы  с плавящимся ТАМ; 

- жидкостные аккумуляторы тепла;

- паровые аккумуляторы  тепла;

- термохимические  аккумуляторы;

- тепловые  аккумуляторы с электронагревательным  элементом.

Рис. 1. Основные типы тепловых аккумуляторов с  твердым теплоаккумулирующим  материалом:

а – с пористой матрицей; б, в – канальные; г, д – подземные с вертикальными и горизонтальными каналами; е – в водоносном горизонте;

1 – вход теплоносителя; 2 – теплоизоляция; 3 – разделительная  решетка; 4 – ТАМ; 5 – опоры; 6 – выход  теплоносителя; 7 –  разделение потоков; 8 – индуктор; 9 – водоносный слой; 10 – водонепроницаемый слой. 

Традиционно рассматриваются  тепловые аккумуляторы с неподвижной  или подвижной матрицами [1]. Использование  неподвижной матрицы обеспечивает максимальную простоту конструкции, но требует больших масс ТАМ. Кроме этого, температура теплоносителя на выходе из аккумулятора изменяется в течение времени, что требует дополнительной системы поддержания постоянных параметров путем перепуска.

 Канальные  тепловые аккумуляторы широко  применяются в системах электро-, теплоснабжения, использующих внепиковую энергию. Теплоаккумулирующий материал (шамот, огнеупорный кирпич и т. п.) нагревается в периоды минимального потребления электроэнергии, что позволяет выравнивать графики загрузки электростанций. Пропуская холодный воздух через матрицу можно производить обогрев помещений. Аккумуляторы данного типа производятся за рубежом серийно для индивидуальных и малосемейных домов.

 Особым типом  канальных тепловых аккумуляторов  с твердым ТАМ являются тепловые  графитовые аккумуляторы, используемые в качестве источника энергии в автономных энергоустановках. Температура их нагрева может достигать 3 500 К, что обеспечивает приемлемые массогабаритные характеристики установки. Подземные аккумуляторы тепла с горизонтальными каналами применяются для аккумуляции тепла и его использования в течение 2-4 месяцев.

 Аккумуляторы  тепла в водоносных горизонтах  используются для аккумуляции  количества тепла, достаточного  для теплоснабжения небольшого  поселка в течение года. Здесь  в качестве ТАМ используется водопроницаемый слой земли, в который в режиме заряда через скважину закачивается горячая вода, а в режиме разряда через другую скважину закачивается холодная вода. Вследствие отсутствия поверхностей теплообмена данный тип тепловых аккумуляторов обеспечивает наилучшие экономические характеристики среди подземных аккумуляторов тепла. Очевидно, что недостатками таких видов аккумуляторов являются сложность проектирования для конкретного вида водоносного горизонта, большие энергетические затраты на прокачку теплоносителя.

 Использование  подвижной матрицы предполагает  применение тепловых аккумуляторов,  как правило, в виде вращающегося  регенератора, устройств с падающими  шарами и т. п. Такие аккумуляторы  применяются в аппаратах регенерации  тепловой энергии, и вследствие малой продолжительности рабочего цикла они имеют небольшие конструктивные размеры. Для тепловых аккумуляторов с подвижной матрицей характерна постоянная температура газа на выходе. Основные показатели аккумуляторов тепла с твердым ТАМ определяются в зависимости от их конструктивных решений и назначения. При этом принимаются допущения о равномерности распределения потоков теплоносителей по площади матрицы, независимости свойств ТАМ и теплоносителей от температуры и ряд других.

 При использовании теплоты плавления некоторых веществ для аккумулирования теплоты обеспечивается высокая плотность запасаемой энергии, небольшие перепады температур и стабильная температура на выходе из теплового аккумулятора. Несмотря на это, большинство ТАМ в расплавленном состоянии являются коррозионно-активными веществами, в большинстве своем имеют низкий коэффициент теплопроводности, изменяют объем при плавлении и относительно дороги. В настоящее время известен достаточно широкий спектр веществ, обеспечивающих температуру аккумуляции от 0 до 1 400 °C. Необходимо отметить, что широкое применение тепловых аккумуляторов с плавящимся ТАМ сдерживается, прежде всего, соображениями экономичности создаваемых установок. При небольших рабочих температурах (до 120 °C) рекомендуется применение кристаллогидратов неорганических солей, что связано в первую очередь с использованием в качестве ТАМ природных веществ. Для реального применения рассматриваются только вещества, не разлагающиеся при плавлении либо растворяющиеся в избыточной воде, входящей в состав ТАМ.

 Использование  органических веществ полностью  снимает вопросы коррозионного  разрушения корпуса, обеспечивает  высокие плотности запасаемой  энергии, достаточно хорошие технико-экономические  показатели. Однако в процессе  работы теплового аккумулятора с органическими ТАМ происходит снижение теплоты плавления вследствие разрушения протяженных цепочек молекул полимеров. Из-за низкого коэффициента теплопроводности органических ТАМ требуется создание и применение развитых поверхностей теплообмена, что, в свою очередь, накладывает конструктивные ограничения на использование теплового аккумулятора.

 При рабочих  температурах от 500 до 1 600 °C применяются,  как правило, соединения и сплавы  щелочных и щелочноземельных  металлов [1, 4]. Существенным недостатком применения соединений металлов принято считать низкий коэффициент теплопроводности, коррозионную активность, изменение объема при плавлении. Для защиты от химической коррозии очевидно необходимо подобрать конструкционные материалы или ингибиторы коррозии, обеспечивающие заданный срок службы теплового аккумулятора. Перспективно использовать смеси и сплавы органических и неорганических веществ, позволяющие обеспечивать необходимые значения температур плавления и большие сроки службы.  Применение разнообразных теплоаккумулирующих материалов требует разработки надежных конструктивных решений, направленных на максимальное использование положительных качеств ТАМ и исключение их недостатков (рис. 2).

Размещение ТАМ  в капсулах (рис. 2а) обеспечивает высокую надежность конструкции, позволяет создавать развитую поверхность теплообмена, компенсировать (при использовании гибких капсул) изменение объема в процессе фазовых переходов. Однако вследствие низкой теплопроводности ТАМ необходимо большое число капсул малого размера, что приводит к большой трудоемкости изготовления теплового аккумулятора. Поэтому целесообразным является применение капсульных тепловых аккумуляторов в случаях малых тепловых потоков, отводимых теплообменной поверхностью.

Расположение ТАМ в межтрубном пространстве кожухотрубного теплообменника (рис. 2б) обеспечивает рациональное использование внутреннего объема теплового аккумулятора и применение традиционных технологий изготовления теплообменных аппаратов. Однако при такой конструкции затруднено обеспечение свободного расширения ТАМ, вследствие чего понижена надежность аккумулятора в целом.

Рис. 2. Основные типы тепловых аккумуляторов фазового перехода:

а – капсульный; б  – кожухотрубный; в, г – со скребковым удалением ТАМ; д  – с ультразвуковым удалением ТАМ; е, ж – с прямым контактом и прокачкой ТАМ; з, и – с испарительно-конвективным переносом тепла;1 – жидкий ТАМ; 2 – твердый ТАМ; 3 – поверхность теплообмена; 4 – корпус теплового аккумулятора; 5 – теплоноситель; 6 – граница раздела фаз; 7 – частицы твердого ТАМ; 8 – промежуточный теплообменник; 9 – паровое и жидкостное пространства для теплоносителя.

Самым технологически сложным и дорогим элементом  теплового аккумулятора традиционной конструкции является теплообменная  поверхность. Вследствие низких коэффициентов теплопроводности большинства плавящихся ТАМ, в настоящее время предложены различные способы уменьшения поверхности теплообмена путем соскребания ТАМ (рис. 2в, 2г), путем ультразвукового либо электрогидравлического разрушения затвердевшего ТАМ (рис. 2д). Указанные выше способы позволяют существенно снизить величину термического сопротивления теплообменной поверхности, но в то же время они в несколько раз увеличивают нагрузки на конструктивные элементы аккумулятора.

 Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Очевидно, что в этом случае необходимо подбирать как теплоаккумулирующие материалы, так и теплоносители по признакам, обеспечивающим работоспособность конструкций. Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям [1, 4]:

- кристаллизоваться отдельными кристаллами;

- иметь большую разность плотностей твердой и жидкой фаз;

- быть химически стабильными;

- не образовывать эмульсий с теплоносителем.  

  Теплоносители подбираются  по следующим признакам:

- химическая стабильность в смеси с ТАМ;

- большая разница плотностей по отношению к ТАМ;

- малая способность к вспениванию;

- и ряд других требований, вытекающих из особенностей конструкции.  

 При использовании  более плотного теплоносителя,  чем твердый ТАМ, реализуется  схема, изображенная на рис. 2е.  В процессе работы аккумулятор  заполнен смесью теплоаккумулирующего  материала и теплоносителя. В верхнюю часть теплового аккумулятора подается жидкий теплоноситель, который попадает на поверхность ТАМ, охлаждает (нагревает) его и отводится из нижней части аккумулятора. За счет меньшей плотности жидкой фазы ТАМ, по сравнению с твердой, его закристаллизовавшиеся частицы опускаются в нижнюю часть аккумулятора. В дальнейшем происходит постепенное заполнение всего объема закристаллизовавшимися ТАМ. При использовании теплоносителя с плотностью, меньшей плотности ТАМ, реализуется схема, изображенная на рис. 2ж. Распыл теплоносителя происходит в нижней части аккумулятора. В процессе всплытия капель теплоносителя ТАМ нагревается либо охлаждается и одновременно интенсивно перемешивается. Очевидно, основными недостатками приведенных способов контакта ТАМ и теплоносителя являются потребности в постороннем источнике энергии для прокачки и необходимость тщательной фильтрации теплоносителя с целью препятствия уносу частиц ТАМ.

Информация о работе Аккумуляторы тепловой энергии