Везикулярный транспорт

Автор: Пользователь скрыл имя, 07 Февраля 2013 в 19:12, реферат

Описание работы

В работе рассмотрен процесс транспортировки белков в клетке

Содержание

1. Введение
2. Пути транспорта белков в клетке
3. Сигнальные последовательности белков
4. Транспорт в ядро.Транспорт в митохондрии и пластиды
5. Везикулярный транспорт
6. Транспорт белков из аппарата Гольджи на наружную мембрану. Экзоцитоз и трансцитоз
7. Заключение
8. Использованная литература

Работа содержит 1 файл

Vezikulyarnyy_transport.doc

— 168.50 Кб (Скачать)

ЗАПАДНО – КАЗАХСТАНСКИЙ  ГОСУДАРСВЕННЫЙ МЕДИЦИНСКИЙ 

                                       УНИВЕРСИТЕТ имени МАРАТА ОСПАНОВА

 

 

 

 

 

 

 

 

 

      САМОСТОЯТЕЛЬНАЯ РАБОТА   

                        СТУДЕНТА

 

 

         НА ТЕМУ:   Везикулярный транспорт

 

 

 

 

 

                                           ФАКУЛЬТЕТ: ОБЩАЯ МЕДИЦИНА

 

                              ДИСПИЦПЛИНА: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

 

                      

 

 

 

                                 ПОДГОТОВИЛ:

                                                                             ПРОВЕРИЛ(А):

                                                                             ОЦЕНКА:

 

                                                                  

                                                                  АКТОБЕ 2013г.

                                      План.

 

 

  1. Введение
  2. Пути транспорта белков в клетке
  3. Сигнальные последовательности белков
  1. Транспорт в ядро.Транспорт в митохондрии и пластиды

  1. Везикулярный транспорт

  1. Транспорт белков из аппарата Гольджи на наружную мембрану. Экзоцитоз и трансцитоз

  1. Заключение

  1. Использованная литература

Введение.

 Синтезируемые  в цитоплазме на рибосомах  белки должны попадать в разные компартменты клетки — ядро, митохондрии, ЭПР, аппарат Гольджи, лизосомы и др., а некоторые белки должны попасть во внеклеточную среду. Для попадания в определённый компартмент белок должен обладать специфической меткой. В большинстве случаев такой меткой является часть аминокислотной последовательности самого белка (лидерный пептид, или сигнальная последовательность белка). В некоторых случаях меткой служат посттрансляционно присоединённые к белку олигосахариды. Транспорт белков в ЭПР осуществляется по мере их синтеза, так как рибосомы, синтезирующие белки с сигнальной последовательностью для ЭПР, «садятся» на специальные транслокационные комплексы на мембране ЭПР. Из ЭПР в аппарат Гольджи, а оттуда в лизосомы, на внешнюю мембрану или во внеклеточную среду белки попадают путём везикулярного транспорта. В ядро белки, обладающие сигнальной последовательностью для ядра, попадают через ядерные поры. В митохондрии и хлоропласты белки, обладающие соответствующими сигнальными последовательностями, попадают через специфические белковые поры-транслокаторы при участии шаперонов.

Пути транспорта белков в клетке

Пути транспорта в клетке

Синтез белка всегда начинается в цитоплазме. Окончание синтеза происходит в цитоплазме либо на шероховатом эндоплазматическом ретикулуме (ШЭР). 
Можно условно выделить два пути транспорта белка в клетке: 
1. Из цитоплазмы в некоторые органеллы (ядро, пластиды, митохондрии) 
2. Большой путь везикулярного транспорта из ШЭР через аппарат Гольджи (АГ) к другим органеллам (лизосомы, пероксисомы) и через секреторные везикулы во внеклеточную среду. Поскольку синтез всех белков начинается в цитоплазме, а конечная локализация каждого белка может быть различна внутри полипептида имеется система сигналов определяющая его транспортный путь. Первичный сигнал определяет путь из цитоплазмы (в ШЭР, в ядро, в митохондрию или в пластиду), вторичный сигнал определяет дальнейшее направление, например, внешняя или внутренняя мембрана митохондрии или матрикс; лизосома, пероксисома или секреторная гранула.

Сигнальные  последовательности белков

Сигнальные  последовательности имеют длину 3-80 аминокислот узнаются специфическими рецепторами на мембранах различных компартментов клетки. 
Сигнальная последовательность ЭР - гидрофобный участок 5-15 аминокислот на N-конце полипептида. 
Сигнал митохондриальных белков 20-80 аминокислот состоящий из спирали и торчащих концов - (+)-заряженного и гидрофобного. 5 (+)-заряженных аминокислот для транспортировки в ядро. Пероксисомные белки имеют последовательность на С-конце Ser-Lys-Leu-COOH. 
Имеется класс сигнальных последовательностей которые не позволяют белку достигшему определенной локализации транспортироваться дальше. Например, мотив Lys-Asp-Glu-Leu-COOH (KDEL) не позволяет белкам покидать эндоплазматический ретикулум.

Одна из функций гладкого ЭР - удержание кальция готового для выпуска в цитозоль при  стимуляции клетки. Кальретикулин - белок  удерживающий ионы кальция. Первые 17 аминокислот включают 14 гидрофобных (синие) - сигнальная последовательность для проникновения в ЭР из цитозоля. Последние четыре аминокислоты KDEL удерживают белок в ЭР. 
(NH2)MLLSVPLLLGLLGLAVAEPAVYFKEQFLDGDGWTSRWIESKHKSDFGKFVLSSGK
YGDEEKDKGLQTSQDARFYALSASFEPFSNKGQTLVVQFTVKHEQNIDCGGGYVKLFP 
NSLDQTDMHGDSEYNIMFGPDICGPGTKKVHVIFNYKGKNVLINKDIRCKDDEFTHLYTLIVRP 
DNTYEVKIDNSQVESGSLEDDWDFLPPKKIKDPDASKPEDWDERAKIDDPTDSKP 
EDWDKPEHIPDPDAKKPEDWDEEMDGEWEPPVIQNPEYKGEWKPRQI 
DNPDYKGTWIHPEIDNPEYSPDPSIYAYDN
GVLGLDLWQVKSGTIFDNFLITNDEAYAEEFGNETWGVTKAAEKQMKDKQDEEQRL 
KEEEEDKKRKEEEEAEDKEDDEDKDEDEEDEEDKEEDEEEDVPGQAKDEL(COOH)

 
Некоторые белки имеют различные  локализации в клетки. Существует несколько путей транспортировки  идентичных полипептидов в различные  компартменты клетки [Karniely, 2005]: 
1. Несколько сигнальных последовательностей в одном полипептиде преднозначенные для разных компартментов. Каталаза А дрожжей имеет две сигнальные последовательности - для митохондрий и пероксисом, причем количество фермента в этих органеллах зависит от состава среды. Некоторые цитохромы имеют два сигнала - митохондриальный и ЭР. Митохондриальный сигнал запускается после посттрансляционного фосфорилирования белка. Известно, что белок-предшественник амилоида болезни Альцгеймера также имеет два сигнала локализации - ЭР и митохондрий. 
2. Одна сигнальная последовательность узнается различными рецепторами на поверхности компартментов. Например, некоторые белки митохондрий и хлоропластов имеют общую сигнальную последовательность, которая более гидрофобна чем специфические сигналы. 
3. Сигнал может быть блокирован другим белком. Апуриновая/апиримидиновая эндонуклеаза 1 (Apn1) - основной фермент эксцизионной репарации репарации ДНК в ядре и митохондриях. С-конец имеет сигнал ядерной локализации (NLS), за которым идет сигнал митохондриальной локализации. белок Pir1 взаимодействует с С-концом Apn1 блокируя NLS. 
4. Сигнал может быть блокирован специфическим сворачиванием белка. Аденилат-киназа дрожжей Aky2 локализуется в цитоплазме и в небольшом количестве в межмембранном пространстве митохондрий, имеет две сигнальные последовательности, активность которых зависит от конформации белка. 
5. Сигнал может быть блокирован после модификации полипептида. Фосфорилированный цитохром CYP2B1, взаимодействует с цитозольным шапероном Hsp70, что приводит к конформационным изменениям и переключает одну сигнальную последовательность на другую. 
6. Одна РНК может иметь два сайта инициации трансляции при этом образуются два белка - один с сигнальной последовательностью, другой без нее, что определит различную локализацию белков в клетке. В другом случае может образовываться две различные РНК кодирующие два идентичных белка, но у одного будет сигнальная последовательность, а у другого нет.

Транспорт в  ядро

Транспорт в митохондрии  и пластиды

Митохондрии и  пластиды имеют собственную ДНК  и самостоятельно синтезируют некоторые  белки. Однако многие из основных белков митохондрий и пластид синтезируются в цитозоле. 
Белки проникающие в митохондрии должны нести сигнал, определяющий локализацию - внутрення или наружная мембрана, или матрикс. 
Белки преднозначенные для матрикса несут сигнал на N-конце, который узнается рецепторами на внешней мембране. Рецептор связан с комплексом переноса белка, который разворачивает белок и переносит его через мембрану. После переноса белка сигнальная последовательность отрезается и белок снова сворачивается. 
Белки шапероны связываются с вновь синтезированным белком предотвращая его сворачивание. 
Шаперонины связываются с белком после его транспортировки к месту доставки и способствуют правильному сворачиванию. 
В ответ на различные стрессовые воздействия (например повышение температуры) в клетке синтезируются шапероны называемые белками теплового шока - hsp (heat-shock proteins), которые стабилизируют клеточные белки. Hsp обнаружены во всех клеточных компартментах эукариот и у бактерий.

Везикулярный транспорт

 
Из одной органеллы в другую перемещение происходит в везикуле или на ее поверхности в виде интегральных белков. 
Донорый компартмент – органелла от которой отрывается мембрана в составе везикулы, акцепторный компартмент – принимает везикулу. 
конститутивная секреция – происходит постоянно и не зависит от внешних сигналов. 
регулируемая секреция – под ПМ происходит накопление пузырьков, которые сливаются с ПМ при наличии внешних сигналов – гормоны, нервы – и повышении конц. Ca2+ до 1мкм 
ретроградный транспорт – возвращение рецепторных белков и липидов из АГ в Эр - восполнение мембраны ЭР. 
антероградный транспорт – растворимые грузовые белки двигаются по секреторному пути ЭР. Окаймленные везикулы - покрыты белками, кот узнают и концентрируют специфич. м-ные белки и отделяют м-ну пузырька, формируют решетку и придают форму везикуле: клатриновые, COPI, COPII: 
Клатриновые везикулы – ~0,1мкм, транспорт из АГ и ПМ,клатрин - 3типа, 3 большие и 3 малые субъединицы формирующие трискелетон – собирающиеся на поверхности м-ны со стороны цитоплазмы в пента- и гексагоны, кот спонтанно формируют сферу. Адаптин – связывает клатрин с м-ной и ловит различные трансм-ные белки в том числе грузовые рецепторы, кот. захватывают р-римые грузовые белки, кот попадают внутрь везикулы. Имеетя по крайней мере 4 типа адаптинов 
динамин - GTP-аза, р-римый цитоплазматический белок, образует кольцо на отделяющейся клатриновой везикуле – регулирует кол-во клатрина отщепляющееся вместе с м-ной в составе везикулы, ассоциирует другие белки помогающие выпучить м-ну и белки модификаторы липидов, изменяющие локально липидный состав м-ны для выпучивания 
После отделения везикулы от м-ны клатрин и адипин отделяют шапероны - ATP-азы hsp70 семейства. Ауксилин – прикрепляется к везикуле и активирует АТФ-азу. Т.к кайма формирующейся везикулы сущ. дольше чем кайма отделенной – имеется стабилизирующий механизм. Клатриновая оболочка обеспечивает значительную силу для изгибания м-ны, т.к. везикулы из внутриклеточных компартментов образуются на уже выпученной м-не 
COP-I – транспорт от АГ и ЭР, 8субъединиц, GTP-белок – фактор рибозилирования АДФ –ARF – транспорт 
COP-II – транспорт из АГ и ЭР, 5 субъединиц 
Везикулы мб не только сферические, часто образуются трубчатые везикулы в которых высокое соотношение S/V 
Образование клатриновых и COP везикул регулируется GTP-связывающими белками, которые могут находится в активном GTP- и неактивном GDP-состоянии 
Два класса белков обменивают GDP-GTP: GEF-гуанин-нуклеотид-фактор обмена активирует белки заменяя GDF?GTF, GAP- белок активирующий GTP-азы – инактивирует GTP-связывающие белки меняя GTP?GDP. 
GTP-азы необходимые для сборки окаймленных везикул перед сборкой пузырьков: мономерные GTP-связывающие белки (GTP-азы): 
ARF-белки – необх для клатриновой и COP сборки на пов-ти м-ны АГ. Sar1 белок, необходим для COPII сборки на на ЭР м-не 
тримерные (G белки). 
GTP-азы находятся в цитозоле в неактивном состоянии, перед сборкой GEF встраивается в м-ну ЭР и связывает цитозольный SarI, кот обменивает GDF?GTP. В GTP состоянии SarI встраивается остатком жирной к-ты в м-ну ЭР. Ассоциирует белки об-ки и инициирует отпочковывание везикулы. GTP-азы попавшие в м-ну активируют фосфолипазу D, кот преобразует фосфолипиды в фосфотидную к-ту, что усиливает связывание оболочных белков. Вместе белок-белковые и белок-липидные взаимодействия изгибают м-ну 
SNARE – белки – отвечают за слияние донорной и акцепторной м-н, более 20, каждая на специфич пов-ти м-ны, трансмембранные белки на пов-ти везикулы - v-SNAR, на пов-ти донора – t-SNAR. Взаимодействуя v- и t-SNAR обвиваются др на друга в транс-SNAR-комплекс, обеспечивающий слияние м-н. SNF-белок разрушает транс-SNAR-комплексы – цитозольный шаперон ATP-аза, использует адаптирующие белки для связывания с комплексом-SNAR 
Rab-белки – мономерные GTP-азы, более 30, каждая органелла имеет хотя бы один Rab на м-не со стороны цитоплазмы, регулируют стыковку везикул и связывание v-SNAR-ов и t-SNAR-ов необходимых для слияния м-н. В состоянии GDP-не активны, нах в цитозоле, в состоянии GTP-активны и переходят на пов-ть м-ны органеллы или везикулы. В активном состоянии Rap связываются с м-ной липидным якорем и собирают другие белки участвующие в слиянии м-н 
неактивный Rab-GDP связан с GDI – GDP-диссоциирующий ингибитор. Rab-GDP связывается с GEF-гуанин нуклеотид меняющий фактор, связанный с м-ной донорного компартмента – меняет GDP на GTP. Rab-GTP связывается с м-ной формирующейся везикулы и ассоциирует v-SNARE, которые в составе везикулы транспортируются к органелле и связываются с Rab-эффекторами и t-SNARE, связанными с м-ной акцепторного компартмента и обеспечивают слияние м-н 
белок органелла 
Rab1 ЭР и АГ 
Rab2 цис-АГ 
Rab3A синаптич везикулы, секрет гранулы 
Rab4 ранние эндосомы 
Rab5A ПМ, клатриновые везикулы 
Rab5C ранние эндосомы 
Rab6 промежуточный- и транс-АГ 
Rab7 поздние эндосомы 
Rab8 секреторные везикулы (базолатеральные) 
Rab9 поздние эндосомы, trans-АГ 
Слияние м-н происходит не только при везикулярном транспорте: слияние спермия с яйцом, слияние миобластов во время развития мышечной клетки.

Образование клатринового пузырька. Диаметр  клатринового пузырька ~0,3 мкм

клатриновая везикула

Транспорт белков из аппарата Гольджи на наружную мембрану

Белки, встроившиеся в  мембрану ЭПС и попавшие оттуда в  составе везикул в АГ, могут  перемещаться на наружную мембрану клетки. Их направление к мембране осуществляется благодаря взаимодействию везикул  с микротрубочками цитоскелета и благодаря особым стыковочным белкам, которые обеспечивают слияние везикул с мембраной

Экзоцитоз и трансцитоз

Экзоцитоз есть как у эукариот, так иу прокариот. Экзоцитоз (от греч. Έξω — внешний и κύτος — клетка) у эукариот — клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с наружной клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клеток эукариот этим способом.

У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство [4].

Экзоцитоз может выполнять  различные задачи:

  • доставка на клеточную мембрану липидов, необходимого для роста клетки;
  • доставка на клеточную мембрану мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки;
  • выделение различных веществ из клетки; это могут быть, например, непереваренные остатки пищи у фаготрофных протистов, пищеварительные ферменты у животных с полостным пищеварением, белки межклеточного вещества у животных и материал клеточной стенки у растений, сигнальные молекулы (гормоны или нейромедиаторы).

У эукариот различают  два типа экзоцитоза:

  1. Кальций-независимый конститутивный экзоцитоз встречается практически во всех эукариотических клетках. Это необходимый процесс для построения внеклеточного матрикса и доставки белков на внешнюю клеточную мембрану. При этом секреторные везикулы доставляются к поверхности клетки и сливаются с наружной мембраной по мере их образования.
  2. Кальций-зависимый неконститутивный экзоцитоз встречается, например, в химических синапсах, где служит для выделения нейромедиаторов. При этом типе экзоцитоза секреторные пузырьки накапливаются в клетке, а процесс их высвобождения запускается по определённому сигналу, опосредованному быстрым повышением концентрации ионов кальция в цитозоле клетки. В пресинаптических мембранах процесс осуществляется специальным кальций-зависимым белковым комплексом [w:[SNARE|]].

 

Заключение.

 

 

Подготовив работу на тему «везикулярный транспорт» я поняла, что это очень важный и сложный  процесс.

Сложная организация  эукариотических клеток требует  налаженных механизмов внутриклеточного везикулярного транспорта. Новейшие исследования показали, что механизмы, лежащие в основе таких функционально важных процессов как эндо- и экзоцитоз уникальны и, сохранившись в процессе эволюции, эффективно действуют как в клетке дрожжей, так и в нейроне гиппокампа. Как эндоцитоз лиганд-рецепторного комплекса с поверхности плазматической мембраны, так и транспорт вновь синтезируемых секреторных белков из эндоплазматического ретикулума через цис-, медиал-, транс- Гольджи к поверхности плазматической мембраны осуществляются в везикулах. Транспортные везикулы формируются и отпочковываются от донорной мембраны и после осуществления раунда внутриклеточного транспорта сливаются с акцепторной мембраной. Специализированные белки цитоплазмы покрывают вновь образованные везикулы. Согласно современным представлениям, формирование транспортной везикулы на мембране внутриклеточного компартмента начинается после взаимодействия белков, переносимых везикулой, с трансмембранным рецептором. Изменение структурного состояния связанного рецептора может распознаваться цитоплазматическими белками, которые ассоциируются с мембраной и инициируют образование транспортной везикулы.

 

 

 

 

 

 

 

 

 

 

Используемая литература:

 

1.      Альбертс Б., Брей Д. и др. Молекулярная биология клетки. – М., 1994.

2.      Горышина Е.Н., Чага О.СЮ. Сравнительная гистология тканей внутренней среды с основными иммунологами. – Л., 1990.

3.      Заварзин А.А. Основы сравнительной гистологии. – Л., 1985.

4.      Балахонов А.В. Ошибки развития. - Л., 1990.

5.      Гилберт С. Биология развития: в 3-х т. – М., 1993-95.

6.      Светлов П.Г. Физиология (механика) развития. - Л., 1978. т.1, 2.

7.      Станек И. Эмбриология человека. – Братислава, 1977.

8.      Юрина Н.А., Торбек В.Э., Румянцева Л.С. Основные этапы эмбриогенеза позвоночных животных и человека. – М., 1984.

 


Информация о работе Везикулярный транспорт