Способы размножения дрожжей и их классификация

Автор: Пользователь скрыл имя, 26 Октября 2013 в 08:50, контрольная работа

Описание работы

Специализация на выполнении неодинаковых функций приводит у разных групп дрожжевых грибов к формированию характерного комплекса морфологических и физиологических свойств. Это дает возможность говорить о различных жизненных формах дрожжей. В общей экологии термином «жизненная форма» обозначается внешний облик, определенный морфологический тип организма, сформировавшиеся в результате приспособления к определенной среде обитания. Как уже отмечалось, дрожжи в современном понимании представляют собой определенную жизненную форму грибов. У микроорганизмов приспособления носят в основном физиологический характер, и при выделении таких экологических групп необходимо учитывать физиологические характеристики, поэтому правильнее говорить не о жизненных формах, а о морфо-физиологических группах. Среди дрожжей можно выделять следующие жизненные формы

Содержание

1.Способы размножения дрожжей и их классификация 3
Дрожжевая клетка. Цитология 4
Аскомицетовые дрожжи 10
2. Автотрофное питание микроорганизмов. Роль автотрофов в круговороте веществ в природе. Примеры. 14
Фототрофы 14
Хемотрофы 15
Литература 16

Работа содержит 1 файл

Основы микробиологии 11 вариант.doc

— 119.00 Кб (Скачать)
  • Гаплоидные. У таких дрожжей вегетативное размножение происходит в гаплоидной фазе, а диплоидная стадия очень короткая: образовавшееся диплоидное ядро сразу же делится мейотически с восстановлением гаплоидного состояния. Schizosaccharomyces pombe. Половой процесс - гологамия. Две морфологически сходные гаплоидные вегетативные клетки образуют выросты, с помощью которых происходит контакт, а затем слияние содержимого клеток. Возникает диплоидная зигота, которая вегетативно не размножается, а ядро ее сразу переходит к мейотическому делению. Образующиеся четыре гаплоидных ядра включаются в аскоспоры. После освобождения из аска аскоспоры прорастают и дают начало длительной стабильной вегетативной фазе. Lipomyces tetrasporus. Половой процесс - адельфогамия. Роль гамет здесь выполняют активные почки. Такие почки формируются на гаплоидных вегетативных клетках на поздних стадиях роста после периода вегетативного размножения. Обычно две почки на одной материнской клетке выполняют функцию гамет и копулируют между собой, образуя зиготу, которая затем разрастается в виде мешка и отделяется перегородкой от несущей ее клетки. Ядро зиготы делится мейотически и она превращается в четырехспоровый мешковидный аск, прикрепленный к материнской клетке, на которой может затем формироваться вторая и третья сумки.
  • Диплоидные. У этих дрожжей вегетативно размножаются только диплоидные клетки. Гаплофаза ограничена молодыми асками и аскоспорами.  . Saccharomycodes ludwigii. У этих дрожжей диплоидизация происходит при слиянии аскоспор. Четыре гаплоидные аскоспоры прорастают и начинают копулировать попарно, когда они еще находятся в аске. Образовавшиеся диплоидные клетки размножаются вегетативно, образуя стабильную и длительную диплофазу. При соответствующих условиях, когда снимается контроль митотического деления ядра, диплоидная клетка вступает в митотический цикл и превращается в аск с 4 аскоспорами. Hanseniaspora uvarum. Жизненный цикл сходен с описанным выше за исключением того, что споры не копулируют, но ядро в зрелой споре после освобождения ее из сумки в условиях, обеспечивающих вегетацию, делится мейотически. Образовавшиеся два гаплоидных ядра сливаются, образуя уже диплоидную клетку, способную к вегетативному размножению. Сходный цикл наблюдается и у почвенных дрожжей Williopsis saturnus. 
  • Гапло-диплоидные. Существуют дрожжи, у которых вегетативное размножение может происходить как в гаплоидной, так и в диплоидной фазах. Длительность той  или другой фазы зависит от вида и от условий роста. Saccharomyces cerevisiae. Эти дрожжи вегетируют преимущественно в диплоидном состоянии, но у них имеется короткая вегетативная гаплоидная фаза. Диплоидная клетка в условиях дефицита легкодоступных источников углерода прекращает почковаться, и ядро ее делится мейотически. В результате она превращается в аск с 4 гаплоидными аскоспорами, которые после освобождения из аска прорастают и образуют гаплоидное поколение. Гаплоидные клетки обычно мельче диплоидных и имеют более округлую форму. Шрамы почкования у них сближены, почки образуются группами в одном локусе. После нескольких циклов почкования две клетки конъюгируют и сливаются, восстанавливая диплоидное состояние.
    1. Автотрофное питание микроорганизмов. Роль автотрофов в круговороте веществ в природе. Примеры.

Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические соединения из неорганических.

Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом.

Автотрофные организмы  для построения своего тела используют неорганические вещества почвы, воды, воздуха. При этом почти всегда источником углерода является углекислый газ. При этом одни из них (фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.

Фототрофы

Организмы, для которых  источником энергии служит солнечный  свет (фотоны, благодаря которым появляются доноры — источники электронов), называются фототрофами. Такой тип питания носит название фотосинтеза. К фотосинтезу способны зелёные растения и многоклеточные водоросли, а также цианобактерии и многие другие группы бактерий благодаря содержащемуся в их клетках пигменту — хлорофиллу. Археи из группы галобактерий способны к бесхлорофилльному фотосинтезу, при котором энергию света улавливает и преобразует белок бактериородопсин.

Хемотрофы

Сообщества  микроорганизмов чёрных курильщиков являются хемотрофами и основными продуцентами на дне океанов

Остальные организмы  в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии также могут использовать гетеротрофный тип питания, то есть являются миксотрофами.

 

 

Литература

  1. Жарикова Г.Г., Леонова И.Б. Основы микробиологии. Практикум. – М.: Академия, 2008 г. – 144 с.
  2. Жарикова Г.Г. Микробиология продовольственных товаров. Санитария и гигиена. – М.: Академия, 2008. – 304с.
  3. Жарикова Г.Г. Микробиология продовольственных товаров. Санитария и гигиена: Учебник для студ. Высш. Учеб. Заведений / Гаяна Григорьевна Жарикова. – М.: Издательский центр «Академия», 2005. – 304с.
  4. Прист Ф.Дж. и Йена Кэмпбелл. Микробиология пива. – СПб.: Профессия, 2005. – 370с.
  5. Мудрецова-Висс К.А., Дедюхина В.П. Микробиология, санитария и гигиена питания. – М.: Форум, Инфа, 2008. – 400с.
  6. Нетрусов А.И., И.Б. Котова. Микробиология. – М.: Академия, 2007. – 352с.
  7. Емцев В.Т., Мишустин Е.Н. Микробиология. – М.: Дрофа, 2006. – 448с.
  8. Копреева Р.П. и др. Санитарная микробиология сырья и продуктов животного происхождения. – М.: «Политрафсерфис», 2006. – 407с.

Информация о работе Способы размножения дрожжей и их классификация