Репликация ДНК

Автор: Пользователь скрыл имя, 22 Ноября 2012 в 10:23, реферат

Описание работы

Вся информация о строении и функционировании любого организма содержится в закодированном виде в его ге¬нетическом материале, основу которого у подавляющего числа организмов составляет ДНК. Роль ДНК заключа¬ется в хранении и пере¬даче генети¬ческой (наследственной) информации в живых организмах. Чтобы эта инфор¬мация могла переда-ваться от одного поколения клеток (и организмов) к другому, необходимо её точное копиро¬вание и после¬дующее распределение её копий между потомками.

Содержание

Введение ……………………………………………………………………………….3
Общий механизм репликации …………………………………………………………4
Основные ферменты репликации ……………………………………………………..7

Репликация у прокариот ……………………………………………………………….10
Репликация у эукариот …………………………………………………………………15
Заключение …………………………………………………………………………….. 16
Литература ………………………………………………………………………………17

Работа содержит 1 файл

Федеральное агентство по образовани1.doc

— 481.00 Кб (Скачать)

Федеральное агентство  по образованию

ГОУ ВПО

Иркутский Государственный  Университет

Биолого-почвенный факультет

Реферат

по теме: Репликация ДНК

 

 

 

 

 

 

 

 

 

 

 

Выполнила

студентка группы 04231-Д

Проверил

Берсенева О.А.

Иркутск 2009 г 
ОГЛАВЛЕНИЕ

 

 

 

 

 

Введение  ……………………………………………………………………………….3                                                                                                                          

 

Общий механизм репликации …………………………………………………………4                                                                                         

 

Основные ферменты репликации ……………………………………………………..7

                                                                 

Репликация у прокариот ……………………………………………………………….10                                                                                                  

 

Репликация у эукариот …………………………………………………………………15                                                                                                    

 

Заключение …………………………………………………………………………….. 16                                                                                                                      

 

Литература ………………………………………………………………………………17                                                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

Введение.

 

 

Вся информация о строении и функционировании любого организма  содержится в закодированном виде в его генетическом материале, основу которого у подавляющего числа организмов составляет ДНК.  Роль ДНК заключается в хранении и передаче генетической (наследственной) информации в живых организмах. Чтобы эта информация могла передаваться от одного поколения клеток (и организмов) к другому, необходимо её точное копирование и последующее распределение её копий между потомками. Процесс, с помощью которого создаются копии молекулы ДНК, называется репликацией. Перед тем как разделится, клетки с помощью репликации создают копию своего генома, и в результате клеточного деления  в каждую дочернюю клетку переходит одна копия. Благодаря этому, генетическая информация, содержащаяся в родительской клетке, не исчезает, а сохраняется и передаётся потомкам. В случае многоклеточных организмов передача этой информации осуществляется с помощью половых клеток, образующихся в результате мейотического деления и также несущих копию генома (гаплоидного). Их слияние приводит к объединению двух родительских геномов в одной клетке (зиготе). Из неё развивается организм, клетки которого несут генетическую информацию обоих родительских организмов. Таким образом, основное значение репликации заключается в снабжении потомства генетической информацией. Для обеспечения стабильности организма и вида ДНК должна реплицироваться полностью и с очень высокой точностью, что обеспечивается функционированием определённого набора белков. Замечательной особенностью ДНК является то, что она несёт гены кодирующие эти белки, и, таким образом, информация о механизме её собственного удвоения закодирована в ней самой.

 

 

 

 

 

Общий механизм репликации.

 

Точное самовоспроизведение ДНА  возможно благодаря её особой структуре. Модель структуры ДНК была обнародована Ф.Криком и Д.Уотсоном в 1953 году. Согласно ей  ДНК представляет собой длинную двухцепочечную полимерную молекулу. Мономерами  являются нуклеотиды, соединённые в каждой цепи фосфодиэфирными связями. Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков соединённых 5'-3'-фосфодиэфирными связями , образует как бы боковины винтовой лестницы, а пары оснований -её ступеньки.  Две полинуклеотидные цепи навиты одна на одну, образуя двойную спираль. Вместе они удерживаются водородными связями , образующимися между комплиментарными основаниями противоположных цепей (между А и Т; G и C). Цепи молекул ДНК антипараллельны: одна из них имеет направление 5¢®3¢, другая 3¢®5¢. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной её цепи соответствует (комплиментарна) последовательности дезоксирибонуклеотидов в другой. Уотсон и Крик предположили, что для удвоения ДНК должны произойти разрыв водородных связей и расхождение цепей(рис.1) и что удвоение ДНК происходит путём последовательного соединения нуклеотидов на матрице материнской цепи в соответствии с правилом комплиментарности. В дальнейшем эта матричная природа механизма репликации была подтверждена многочисленными опытами. Подтверждение также получил предложенный полуконсервативный способ репликации двухцепочечной ДНК {Мезельсон, Сталь, 1958 (объект-E.coli); Тэйлор,1958( объект-Vicia faba)}.Согласно ему, в результате дупликации образуются две пары цепей, в каждой из которых только одна является родительской (консервативной), а вторая- заново синтезированной.  Другие механизмы (консервативный, дисперсный) не подтвердились.


Ауторадиографический анализ, проведённый  в начале 60-х гг. (Керренс,1963) на реплицирующихся  хромосомах меченых 3Н-тимидином, показал наличие определённой   зоны, где происходила репликация. Эта зона двигалась вдоль родительской двойной спирали. Из-за Y-образной структуры её назвали репликативной вилкой. Именно в ней и происходят основные процессы, обеспечивающие синтез ДНК. Вилки образуются в структуре, называемой репликативный пузырёк. Это области хромосомы, где две нити родительской спирали ДНК разъединяются и служат как матрицы для синтеза ДНК. Это место, где происходит инициация репликации, называется точкой начала репликации (точкой ori). Образование репликативных вилок происходит в двух направлениях (двунаправленная репликация) и их они затем движутся до встречи с другой вилкой или с концом матрицы. В некоторых случаях наблюдается движение только одной вилки, тогда как вторая является стационарной (однонаправленная репликация). У прокариот на нуклеоиде находится обычно только одна точка ori, тогда как у эукариот их много (например, у дрожжей порядка 500), расположенных на хромосоме на расстоянии 20-35 т.п.н. Участок между двумя точками ori получил название репликон. Скорость репликации у прокариот составляет порядка 1000-2000 нуклеотидов в секунду, у эукариот ниже из-за нуклеосомной организации хроматина (10-200 нуклеотидов в секунду). Скорость репликации всей молекулы ДНК (или хромосомы) зависит от числа и расположения точек ori.

Синтез ДНК в репликативной вилке проходит следующим образом. Цепи синтезируются в результате присоединения 5¢-дезоксинуклеотидильных единиц дезоксирибонуклеотидтрифосфатов к 3¢-гидроксильному концу уже имеющейся цепи (праймер, затравка). За один акт репликации праймерная цепь удлиняется на один нуклеотид, при этом одновременно удаляется один остаток пирофосфата. Цепи синтезируются в направлении 5¢®3¢ вдоль матричной цепи, ориентированной в противоположном, 3¢®5¢, направлении. Синтез Цепей в обратном направлении не происходит никогда, поэтому синтезируемые цепи в каждой репликативной вилке должны расти в противоположных направлениях. Синтез одной цепи(ведущей, лидирующей) происходит непрерывно, а другой (отстающей) импульсами. Такой механизм репликации называется полунепрерывным. Ведущая цепь растёт от 5¢- к 3¢-концу в направлении движения репликативной вилки и нуждается только в одном акте инициации. Рост отстающей цепи также идёт от 5¢- к 3¢-концу, но в направлении противоположном движению репликативной вилки. Для синтеза отстающей цепи должно произойти несколько актов инициации, в результате чего образуется множество коротких цепей, называемых фрагменты Оказаки в честь открывшего их учёного - Р.Оказаки. Размеры их: 1000-2000 нуклеотидов у прокариот, 100-200 нуклеотидов у эукариот. По мере движения репликативной вилки концы соседних фрагментов Оказаки соединяются с образованием непрерывной отстающей цепи. Механизмы инициации репликации в точке ori и при образовании фрагментов Оказаки в принципе аналогичны. В обоих случаях происходит образование РНК- затравок (длиной 10-12 нуклеотидов), комплиментарных матричной ДНК, в виде продолжения которых синтезируется новая цепь ДНК. В дальнейшем короткие вставки РНК  замещаются сегментами ДНК, которые затем объединяются с образованием непрерывных цепей.

 

 

Основные ферменты репликации.

 

Репликация является ферментативным процессом, а не спонтанным как сначала предполагали Уотсон и Крик. В репликации участвуют следующие основные группы ферментов.

ДНК-полимеразы. Ферменты, которые узнают нуклеотид материнской цепи, связывают комплиментарный нуклеозидтрифосфат и присоединяют его к 3¢-концу растущей цепи 5¢-концом. В результате образуется 5¢-3¢-диэфирная связь, высвобождается пирофосфат и растущая цепь удлиняется на один нуклеотид. Таким образом, ДНК-полимераза движется от 3¢- к 5¢-концу молекулы материнской ДНК, синтезируя новую цепь. ДНК-полимеразе для работы нужен праймер (т.е. 3¢-ОН группа для присоединения нового нуклеотида) и матрица, детерминирующая присоединение нужного нуклеотида. ДНК-полимеразы помимо полимеразной активности, имеют экзонуклеазную активность, они способны к гидролизу фосфодиэфирных связей в одной цепи ДНК или на не спаренном конце дуплексной ДНК. За  один акт удаляется один нуклеотид, начиная с 3¢-конца цепи (3¢-5¢-экзонуклеаза) или с 5¢-конца цепи дуплексной ДНК (5¢-3¢-экзонуклеаза). Эти различные активности присущи разным сайтам полипептидной цепи ДНК-полимераз. 3¢-5¢-экзонуклеазная активность обеспечивает контроль за присоединением каждого нуклеотида и удаление ошибочных нуклеотидов с растущего конца цепи. Все ДНК-полимеразы способы осуществлять данный тип реакции. Многие(но не все) ДНК-полимеразы обладают также 5¢-3¢-экзонуклеазной активностью. При сочетании 5¢-3¢-экзонуклеазной и полимеразной активностей происходит последовательное отщепление нуклеотидов с 5¢-конца одноцепочечного разрыва в дуплексе и удлинение цепи с 3¢-конца. В результате место разрыва перемещается по цепи в направлении от 5¢- к 3¢- концу(так называемая ник-трансляция).

ДНК-лигазы --ферменты, осуществляющие соединение цепей ДНК, т.е. катализирующие образование фосфодиэфирных связей между 5¢-фосфорильной и 3¢-гидроксильной группами соседних нуклеотидов в местах разрывов ДНК.  Для образования новых фосфодиэфирных связей требуется энергия в форме АТФ либо НАД.

ДНК-геликазы (ДНК-хеликазы)—ферменты, осуществляющие расплетание двойной спирали ДНК. Для разделения цепей используется энергия АТФ. Геликазы часто функционируют в составе комплекса, осуществляющего перемещение репликативной вилки и репликацию расплетённых цепей. Для расплетания достаточно одного геликазного белка, но для  того. Чтобы максимизировать скорость раскручивания. Несколько геликаз могут действовать совместно.

ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не      требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

       Топоизомеразы  типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.

              Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Репликация  у прокариот.

 

Наиболее изучен процесс репликации у Escherichia coli. У этой бактерии (как и ещё некоторых исследованных видов) в области точки инициации репликации (ori C, длиной примерно 245 п.н.) находятся повторы размером в 13 и 9 пар оснований (Рис.5). При инициации 10-20 молекул белка инициации репликации Dna A связывается с четырьмя девятимерными повторами (9-mers) и расплетает ДНК в районе тандемного набора


тринадцатимеров, богатых  АТ парами (что облегчает их расплетание, т.к. между А и Т только две  водородные связи). Белок Dna C доставляет шестисубъединичный белок Dna B (геликаза) к матрице. На каждую из одиночных цепей садится по одному Dna B  и они затем двигаются в разных направлениях расплетая ДНК.К геликазе присоединяется праймаза и синтезирует РНК-затравку.  Две ДНК-полимеразы  с помощью своих двух b-субъединиц прикрепляются к нити ДНК и начинают синтез ДНК. Расплетанию спирали способствует  SSB-белки, которые связываются с одноцепочечными участками ДНК, предотвращают образование шпилек и тем самым стабилизируют расплетённый дуплекс. Сбалансированное действие топоизомеразы II (гираза), способной индуцировать отрицательные сверхвитки(см.рис.4), и топоизомеразы I, снимающей отрицательные сверхвитки(см.рис.3) регулирует степень сверхспиральности ДНК и таким образом влияет на скорость движения репликативной вилки. 

У прокариот обнаружено три типа ДНК-полимераз. Их свойства приведены ниже.

 

Свойство / тип полимеразы

I

II

III

полимеризация: 5¢-3¢

+

+

+

экзонуклеазная активность:

     

5¢--3¢

+

+

+

3¢--5¢

+

--

--

синтез на:

     

ДНК без праймера

--

--

--

одноцепочечная ДНК с праймером

+

--

--

одноцепочечная ДНК с праймером  и SSB-белками

+

--

+

скорость синтеза (нуклеотиды в  минуту)

600

?

30000

количество молекул в клетке

400

?

10--20


 


 

 

ДНК-полимераза III  осуществляет удлинение лидирующей цепи, а также удлинение РНК-праймеров с образованием фрагментов Оказаки длиной от 1000 до 2000 нуклеотидов. Две ДНК-полимеразы связаны между собой t-субъединицей. Удаление сегментов РНК с 5¢-конца каждого фрагмента Оказаки и заполнение пробелов между ними катализируетcя ДНК-полимеразой I ,способной удлинять цепь и осуществлять ник-трансляцию.

Информация о работе Репликация ДНК