Автор: Пользователь скрыл имя, 21 Ноября 2012 в 02:37, доклад
Регуляция экспрессии генов - это специфическое взаимодействие определенных веществ (главным образом, белков) с различными участками ДНК, расположенных в области точек (сайтов) начала транскрипции. Такое взаимодействие может оказывать как позитивный, так и негативный эффект на уровень транскрипции. В целом, регуляция генной экспрессии - это один из путей адаптации организма к изменяющимся условиям окружающей среды.
Регуляция экспрессии генов у прокариот. В 1961 г. Жакоб и Моно преложили ставшую теперь классической модель оперона. Они исследовали метаболизм лактозы у кишечной палочки. Он осуществляется тремя ферментами, которые кодируются 3 структурными генами. Структурные гены расположены последовательно один за другим и связаны между собой физически. Такое расположение генов позволяет регулировать экспрессию всех трех структурных генов с помощью одного регуляторного центра. Иными словами, информация со всех трех структурных генов переписывается в виде одной молекулы РНК, которая называется полицистронной мРНК. Образование полицистронных мРНК характерно для прокариотов.
Регуляция экспрессии генов - это специфическое взаимодействие определенных веществ (главным образом, белков) с различными участками ДНК, расположенных в области точек (сайтов) начала транскрипции. Такое взаимодействие может оказывать как позитивный, так и негативный эффект на уровень транскрипции. В целом, регуляция генной экспрессии - это один из путей адаптации организма к изменяющимся условиям окружающей среды.
Регуляция экспрессии генов у прокариот. В 1961 г. Жакоб и Моно преложили ставшую теперь классической модель оперона. Они исследовали метаболизм лактозы у кишечной палочки. Он осуществляется тремя ферментами, которые кодируются 3 структурными генами. Структурные гены расположены последовательно один за другим и связаны между собой физически. Такое расположение генов позволяет регулировать экспрессию всех трех структурных генов с помощью одного регуляторного центра. Иными словами, информация со всех трех структурных генов переписывается в виде одной молекулы РНК, которая называется полицистронной мРНК. Образование полицистронных мРНК характерно для прокариотов.
Строение регуляторного центра. В состав регуляторного центра входит ген, который постоянно функционирует. Такая экспрессия не подвержена специфической регуляции и называется конститутивной. Продукт этого гена - белок- репрессор. Белок -репрессор состоит из 4-х субъединиц с молекулярной массой 38 тыс Да. Между этим конститутивным геном и структурными генами находятся: оперативный локус или оператор и промотор. Оператор - это участок ДНК, длиной в 27 пар оснований. Промотор - это участок ДНК, к которому присоединяется РНК-полимераза. Промотор, оператор и структурные гены называются опероном.
У прокариот наблюдается 2 типа регуляции генов: позитивная и негативная. Последовательность негативной регуляции: конститутивный ген постоянно вырабатывает белок-репрессор. Этот репрессор в отсутствие лактозы садится на оператор и препятствует связыванию РНК - полимеразы с промотором. В этом случае не происходит синтез полицистронной мРНК.
Если в клетку попадает индуктор (лактоза), то он связываются с репрессором, меняет его конформацию, что приводит к освобождению оператора. Свободный оператор - это сигнал, разрешающий связывание РНК-полимеразы с промотором и начало транскрипции полицистронной мРНК. Обязательными условиями присоединения РНК - полимеразы является наличие циклического АМФ и белка-активатора катаболитных генов. Только при их совместном действии РНК- полимераза связывается с промотором. После этого начинается синтез мРНК. Особенностью у прокариот является то, что не дожидаясь окончания синтеза мРНК, начинается синтез белка рибосомами. Т.е. лактоза сама индуцирует собственное расщепление. При снижении концентрации лактозы репрессор высвобождается, связывается с оператором и синтез мРНК блокируется. Такой тип оперона называется индуцибельным.
Другим вариантом оперона является
регуляция конечным продуктом реакции
(эффектором). В этом случае ген-регулятор
определяет синтез неактивного
белка-репрессора. Конечный продукт
реакции связывается с
У прокариот соблюдается принцип коллинерности, т.е. размер мРНК соответствует размеру гена. Регуляция экспрессии гена у прокариот происходит только на уровне транскрипции.
Схема строения типичного гена эукариот.
У эукариот принято выделять две зоны: структурную и регуляторную. Они разделены сайтом начала транскипции. Структурная зона представлена структурным геном. Ген состоит из кодирующих последовательностей - экзонов и некодирующих последовательностей - интронов. Длина интронов колеблется от 80 до 1000 и более нуклеотидов. Для интронов не характерна строгая последовательность нуклеотидов. Интроны ограничены консенсусными областями, строго консервативными. Это связано с точным механизмом удаления интронов, так как ошибка в 1 нуклеотид сделает бессмысленной закодированную информацию. Количество интронов колеблется от 2 до 50.
Регуляторная область состоит из 2-х элементов: 1 элемент обеспечивает базовый уровень регуляцию экспрессии (или промотор), 2-й элемент - дополнительный уровень регуляции экспрессии. Промотор располагается перед точкой (сайтом) начала транскрипции. Базовый уровень регуляции экспрессии состоит из 2-х элементов: ТАТА-бокс и ЦААТ-бокс. ТАТА-бокс направляет РНК-полимеразу к сайту инициации транскрипции и, следовательно, определяет точность начала синтеза мРНК. ЦААТ-бокс контролирует частоту транскрипции. Чтобы РНК-полимераза узнала промотор, необходимо предварительное присоединение ТАТА-фактора - большого белкового комплекса. ТАТА-бокс и ТАТА-фактор образуют транскрипционный комплекс многоразового использования. Общее свойство элементов базовой регуляции: они функционируют только при связывании с ними определенных белковых факторов, которые называются белки-регуляторы. Белки-регуляторы связываются в определенном месте, которое называется область, лежащая перед промотором. Обычно он представляет собой последовательность ДНК, содержащую 100 нуклеотидных пар.
Предпромоторная область содержит сайты связывания с белками -регуляторами. Существуют белки-регуляторы, специфичные для клеток данной ткани. Но также существуют белки-регуляторы, характерные для многих клеток. Но при этом регуляторные белки взаимодействуют друг с другом и от суммарного знака взаимодействия зависит включен ген или выключен. а также степень его экспрессии. Эффект совместного действия белков - регуляторов и от их сочетания контролирует активность многих генов. Но не все регуляторные белки равны: существуют главные белки-регуляторы, которые контролируют работу многих генов.
Белки-регуляторы кодируются генами, лежащими на той же хромосоме или на других хромосомах. В первом случае регуляция относится к цис-типу, во втором - к транс-типу.
Дополнительный уровень
Кроме того, существует еще один класс регуляторных последовательностей, которые обеспечивают адаптивную регуляцию экспрессии некоторых генов. К ним относятся регуляторные элементы, которые начинают участвовать в регуляции в ответ на действие: а) гормонов, б) теплового шока, в) действие металлов, например, кадмия и цинка, г) некоторых химических токсинов и т.д.
Синтез и процессинг РНК. Синтез РНК- это сложный многоэтапный процесс, идущий с потреблением энергии. На первом этапе происходит деконденсация хроматина, затем наступает стадии инициации, элонгации и терминации.
Инициация запускается тремя факторами инциации белковой природы. В ходе стадии инициации РНК-полимераза, присоединяясь к промотору, начинает раскручивать цепи ДНК кпереди от себя. Синтез мРНК всегда идет на одной из двух цепей ДНК. мРНК всегда одноцепочечная. Построение РНК на ДНК происходит по принципу комплементарности, с той лишь разницей, что вместо тимина используется урацил. Заканчивается синтез РНК в терминирующей последовательности. Эта последовательность называется кодоном терминации трансляции.
Область транскрибируемой ДНК, лежащей между промотором и терминатором, называется единицей транскрипции или транскриптоном. Образующаяся РНК называется первичным транскриптатом. У прокариот первичный транскриптат обычно содержит РНК-копии нескольких генов, у эукариот - только одного.
Существует несколько типов РНК-полимераз, в процессе синтеза РНК участвует РНК-полимераза II. Первоначально синтезируется 5 - конец РНК-транскриптата, который сразу кэпируется. Функция кэпирования - это защита РНК-транскриптата от разрушения, а также с помощью кэпа РНК связывается с рибосомой.
Кэпирование - это присоединение определенной последовательности нуклеотидов. С нее начинается на рибосоме трансляция, затем кэп удаляется. Стадия элонгации или удлинения РНК-транскриптата. Во время этой стадии происходит дальнейшее расплетание ДНК и разрушение нуклеосом. Скорость синтеза - 30 нуклеотидов в секунду. Элонгация контролируется специальными факторами элонгации белковой природы. Стадия терминации: завершение синтеза РНК-транскриптата происходит в стоп-кодоне вследствие присоединения факторов терминации белковой природы. При этом к 3-концу транскриптата присоединяются от 100 до 200 остатков адениловой кислоты, которые образуют polyA - хвост. Считается, что poly-А-хвост предотвращает деградацию РНК-транскриптата и облегчает его транспорт в цитоплазму. Первичные РНК-транскриптаты могут либо хранится в нуклеоплазме, либо подвергаться сплайсингу.
Ген - это сложная функционально
активная единица, предназначенная
для регулируемого синтеза
Сплайсинг РНК. В этом случае к первичным РНК-транскриптатам присоединяются частицы, которые называются гетерогенными ядерными нуклеопротеиновыми частицами (гя-РНП-частицы). Они представляют собой РНК длиной 5000 нуклеотидов, намотанную на белковый остов. Гя-РНП-частицы присоединяются в местах соединения экзонов и интронов, затем попарно объединяются с образованием агрегатов или сплайсосом. Кроме того, в состав сплайсосомы входят малые ядерные РНК, функция которых - удаление интронов.
Механизм удаления интронов происходит с высокой точностью. В процессе сплайсинга РНК образуется специфичная лассо-образная структура, которая приводи к высвобождению интронов и сшиванию экзонов. Итак, после процессинга и сплайсинга РНК-транскриптат содержит: кэпирующую последовательность, кодон инициации (AUG) - метионин, экзоны, стоп-кодон и полиА-конец. Такая мРНК-выходит в цитоплазму и используется в процессе синтеза белка.
Альтернативный сплайсинг. Механизм и регуляция неизучены. Суть альтернативного сплайсинга - из одного и того же первичного транскриптата можно получить разные м-РНК путем сшивания экзонов в разной последовательности. Считается, что альтернативный сплайсинг очень распространен. Так, один первичный транскриптат в зависимости от числа экзонов может нести информацию от 4 до 1000 генов. Другим доказательством является то, что молекул РНК в ядре мало - 2 процента, в цитоплазме можно обнаружить 145 тыс. видов мРНК.
Синтез тРНК и рРНК. тРНК- у прокариот и эукариот синтезируются в виде больших предшественников, которые затем подвергаются нуклеолитическому процессингу при участии рибонуклеаз, так как гены тРНК содержат единичные интроны. После сплайсинга формируется пространственная структура, содержащяя 2 функциональные части: триплет антикодона и аминоацильный конец. В клетках находятся 20 видов тРНК, по числу аминокислот, входящих в состав белка.
Гены рРНК располагаются в ядрышке. Молекулы рРНК первоначально транскрибируются в виде большого первичного транскриптата. Этот транскриптат подвергается нуклеолитическому процессингу, отличающегося от процессинга тРНК механизмом и сигналами. Сразу по окончанию процессинга рРНК связывается с белками и образуют большую и малую субъединицу рибосом.
Уровни регуляции экспрессии генов у эукариот. Регуляция экспрессии генов у эукариот идет на разных уровнях и в разных компартментах. В ядре экспрессия генов регулируется на уровнях генных перестроек, амплификации, структурных перестроек хроматина, транскрипции и процессинга. В цитоплазме контроль осуществляется на уровне трансляции и пострансляции.
Контроль на уровне транскрипции зависит от действия белков-регуляторов, энхансеров и сайленсеров и элементов адаптивной регуляции. Контроль на уровне процессинга РНК. Процессинг бывает 2-х типов: альтернативный и дифференциальный. Альтернативный процессинг - это механизм, определяющий какой из первичных РНК-транскриптатов будет подвергнут сплайсингу. Дифференциальный процессинг РНК заключается в том, что из общего транскриптата образуются различные молекулы РНК. Это определяется различиями в выборе сайтов полиаденилования. С дифференциальным процессингом тесно связан механизм альтернативного сплайсинга. Контроль на уровне трансляции: скорость деградации мРНК.
Синтез белка. мРНК представляет собой последовательность нуклеотидов: A, U, G, C. Их можно сравнить с 4-х буквенным алфавитом. Сочетание трех букв или трех нуклеотидов (триплет) называется кодоном. К месту синтеза белка аминокислоты доставляются транспортными РНК. Синтез белка начинается с образования комплекса рибосома-мРНК. Рибосома содержит 2 функциональных участка: пептидильный (Р) и аминоацильный (А). В аминоацильном участке происходит узнавание кодонов. В пептидильном участке содержится растущая цепь. Этапы синтеза белка: инициация, элонгация и терминация.
Инициация включает в себя узнавание, при котором кодону на мРНК соответствует антикодон тРНК, затем происходит транслокация тРНК с аминокислотой в Р-центр, присоединение аминокислоты и высвобождение тРНК. При этом мРНК смещается относительно рибосомы на один кодон. На стадии элонгации процесс повторяется снова, с той лишь разницей, что каждая последующая аминокислота присоединяется к предыдущей с образованием пептидной связи. Этот процесс протекает с энерготратами в виде АТФ. Одна рибосома за 1 минуту осуществляет синтез 100 пептидных связей. Стадия терминации начинается, когда в А центре появляется нонсенс-кодон. Этот нонсенс-кодон узнается факторами высвобождения и отсоединяет молекулу белка от рибосомы. В целом, процесс синтеза белка регулируется и контролируется 9 факторами белковой природы: по 3 фактора инициации, элонгации и терминации. После окончания синтеза, белок попадает в полость эндоплазматического ретикулума, приобретает вторичную, третичную структуру, подвергается процессингу, может использоваться в жизнедеятельности клетки, складироваться или секретироваться наружу путем экзоцитоза.