Понятие «жизни» и свойства живого

Автор: Пользователь скрыл имя, 13 Сентября 2013 в 20:56, доклад

Описание работы

Одно из определений более 100 лет назад дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, непременное условие жизни - постоянный обмен веществ, с прекращением которого прекращается и жизнь.»
По современным представлениям, жизнь - это способ существования открытых коллоидных систем, обладающих свойствами саморегуляции, воспроизведения и развития на основе геохимического взаимодействия белков, нуклеиновых кислот других соединений вследствие преобразования веществ и энергии из внешней среды.

Работа содержит 1 файл

obschaya_bioologia (1).docx

— 64.54 Кб (Скачать)

Этот процесс происходит слишком медленно и плохо контроли­руется.

2. Облегченная диффузия  осуществляется также согласно  кон­центрационному градиенту и обеспечивает перенос веществ, спо­собных образовывать комплексы с молекулами—переносчиками мембранных белков. Переносчик должен свободно переходить с одной стороны мембраны на другую. Этот транспорт осуществля­ется очень быстро, поскольку переносчик облегчает переход транспортируемого вещества через мембрану. Движущей силой является градиент транспортируемого вещества. С помощью про­стой диффузии не могут проходить через мембрану даже неболь­шие полярные молекулы: моносахариды, аминокислоты. Облег­ченная диффузия имеет ряд особенностей:

наличие специфических переносчиков для отдельных или не­скольких  веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем  же переносчиком и конкурировать за переносчика;

у молекулы-переносчика может  быть особый канал, пропус­кающий вещество только одного определенного типа;

с увеличением концентрации вещества с одной стороны мем­браны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии. Пре­кращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все пере­носчики уже заняты, - явление насыщения.

3. Осмос - это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление - это диффузионное давле­ние, обеспечивающее движение растворителя через полупрони­цаемую мембрану. Измеряется минимальной величиной механи­ческого давления на раствор (например, с помощью поршня), препятствующего движению растворителя через полупроницае­мую мембрану. Осмотическое давление одномолярного раство­ра чрезвычайно велико - 22,4 атм, в плазме крови оно сущест­венно ниже - 7,6 атм, несколько больше внутри клетки, что и обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Осмос продолжается до выравнива­ния осмотического давления по обе стороны полупроницаемой мембраны. Поэтому при подавлении метаболизма клетки быстро набухают, так как внутри клетки осмо­тическое давление сохраняется повышенным: внутрь клеток по­ступает вода и они становятся более упругими. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через вод­ные каналы могут проходить также малые незаряженные моле­кулы: кислород, углекислый газ, этанол, мочевина.

Натрийзависимый транспорт.

 В этом случае энергия  затра­чивается на создание градиента натрия. Различают два варианта данного механизма транспорта.

Первый вариант: направление  движения транспортиру­емого вещества совпадает с направлением движения натрия соглас­но его электрохимическому градиенту (симпорт). Глюкоза связыва­ется с белком-переносчиком мембраны, последний соединяется с ионом Na+, a Na+, согласно концентрационному и электрическому градиентам, диффундирует в клетку и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, ион Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту - первично активно. Глюкоза вместе с ионом Na+ попадает в клетку даже в том случае, если ее концентрация в клетке больше, чем в среде.

Второй вариант: перемещение  транспортируемых час­тиц направлено в противоположную движению ионов Na+ сто­рону - это антипорт (противотранспорт). С помощью этого об­менного механизма регулируется, например, содержание ионов Са2+ в клетке, рН внутри клетки за счет выведения иона Н+ в обмен на внеклеточный ион Na+. Внутриклеточная концентра­ция иона Са2+ на несколько порядков ниже внеклеточной. На­триевый концентрационный градиент участвует в выведении иона Са2+ из клетки.

Транспорт веществ  из кровеносных сосудов в интерстиций ЦНС осуществляется с помощью диффузии, осмоса, фильтрации и трансцитоза. Фильтрация - переход раствора через полупроницае­мую мембрану (стенку сосуда) под действием градиента гидроста­тического давления между жидкостями по обе стороны этой мем­браны. Градиент гидростатического давления создается либо дея­тельностью сердца (фильтрация в артериальном конце капилляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкими мышцами пищеварительного тракта и мышечного пресса, обеспечивающих повышение гидростати­ческого давления в полости желудка и кишечника, что способст­вует всасыванию веществ в кровь.

Таким образом, механизмы  вторичного транспорта веществ весьма разнообразны. Вторичный транспорт  ионов осуществляет­ся, как правило, с помощью простой диффузии через специальные ионные каналы.

15.Уровни компактизации ДНК

Первый уровень компактизации ДНК - нуклеосомный. Если подвергнуть действию нуклеазы хроматин, то он и ДНК, подвергаются распаду на регулярно повто­ряющиеся структуры. После нуклеазной обработки из хроматина путем центрифугирования вы­деляют фракцию частиц со скоростью седиментации 11S. Частицы 11S содержат ДНК около 200 нуклеотидных пар и восемь гистонов. Такая сложная нуклеопротеидная частица получила название Нуклеосомы. В ней гистоны образуют белковую основу-сердцевину, по поверхности которой располага­ется ДНК. ДНК образуют участок, с белками сердце­вины не связанный, — Линкер, Который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Они образуют «бусины», глобулярные образования около 10 нм, сидящие друг за другом на вытянутых молекулах ДНК. Второй уровень компактизации—30 нм фибрилла. ПЕрвый, нуклеосомный, уровень компакти­зации хроматина играет регуляторную и структурную роль, обеспечивая плотность упаковки ДНК в 6—7 раз. В митотических хромосомах и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 25—30 нм. Выделяют соленоидный тип укладки нуклеосом: нить плотно упако­ванных нуклеосом диаметром 10 нм образует витки с шагом спирали около 10 нм. На один виток такой су­перспирали приходится 6—7 нуклеосом. В результате такой упаковки возникает фиб­рилла спирального типа с цент­ральной полостью. Хроматин в составе ядер имеет 25-нм фибриллы, которая состоит из сближенных глобул того же размера — Нуклеомеров. Эти нуклеомеры называют сверхбусинами («супербиды»). Основная фибрилла хроматина диаметром 25 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК. В составе нуклеомера образуются два витка нуклеосомной фибриллы, по 4 нуклеосомы в каждом. Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК. Нуклесомный и нуклеомерный (супербидный) уровни компак­тизации ДНК хроматина осуществляются за счет гистоновых белков. Петлевые домены ДНК —третий уровень структурной организации хроматина. В высших уровнях организации хроматина специфические белки свя­зываются с особыми участками ДНК, которая в местах связы­вания образует большие петли, или домены. В некоторых местах есть сгустки конденсированного хроматина, розетковидные образования, состоящие из многих пе­тель 30 нм-фибрилл, соединяющихся в плотном центре. Средний раз­мер розеток достига­ет 100—150 нм. Розетки фиб­рилл хроматина—Хромомеры. Каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромо­меры связаны друг с другом участками нуклеосомного хро­матина. Такая петельно-доменная структура хроматина обеспечивает структурную компактизацию хроматина и организует функ­циональные единицы хромосом — репликоны и транскрибиру­емые гены.


Информация о работе Понятие «жизни» и свойства живого