Автор: Пользователь скрыл имя, 02 Декабря 2011 в 12:38, реферат
Приведенный в разделе Основная цель пример поясняет цель алгоритма объединения (древовидной кластеризации). Назначение этого алгоритма состоит в объединении объектов (например, животных) в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево
Основная цель
Термин кластерный
анализ (впервые ввел Tryon, 1939) в действительности
включает в себя набор различных алгоритмовклассифика
Области применения
Техника кластеризации
применяется в самых
В начало |
Объединение (древовидная кластеризация)
Общая логика
Приведенный в разделе Основная цель пример поясняет цель алгоритма объединения (древовидной кластеризации). Назначение этого алгоритма состоит в объединении объектов (например, животных) в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево.
Иерархическое дерево
Рассмотрим горизонтальную древовидную диаграмму. Диаграмма начинается с каждого объекта в классе (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы "ослабляете" ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер.
В результате, вы связываете вместе всё большее и большее число объектов и агрегируете (объединяете) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе. На этих диаграммах горизонтальные оси представляют расстояние объединения (в вертикальных древовидных диаграммах вертикальные оси представляют расстояние объединения). Так, для каждого узла в графе (там, где формируется новый кластер) вы можете видеть величину расстояния, для которого соответствующие элементы связываются в новый единственный кластер. Когда данные имеют ясную "структуру" в терминах кластеров объектов, сходных между собой, тогда эта структура, скорее всего, должна быть отражена в иерархическом дереве различными ветвями. В результате успешного анализа методом объединения появляется возможность обнаружить кластеры (ветви) и интерпретировать их.
Меры расстояния
Объединение или
метод древовидной
Евклидово расстояние. Это, по-видимому, наиболее общий тип расстояния. Оно попросту является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:
расстояние(x,y) = { i (xi - yi)2 }1/2
Заметим, что
евклидово расстояние (и его квадрат)
вычисляется по исходным, а не по
стандартизованным данным. Это обычный
способ его вычисления, который имеет
определенные преимущества (например,
расстояние между двумя объектами
не изменяется при введении в анализ
нового объекта, который может оказаться
выбросом). Тем не менее, на расстояния
могут сильно влиять различия между
осями, по координатам которых
Квадрат евклидова расстояния. Иногда может возникнуть желание возвести в квадрат стандартное евклидово расстояние, чтобы придать большие веса более отдаленным друг от друга объектам. Это расстояние вычисляется следующим образом (см. также замечания в предыдущем пункте):
расстояние(x,y) = i (xi - yi)2
Расстояние городских кварталов (манхэттенское расстояние). Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат). Манхэттенское расстояние вычисляется по формуле:
расстояние(x,y) = i |xi - yi|
Расстояние Чебышева. Это расстояние может оказаться полезным, когда желают определить два объекта как "различные", если они различаются по какой-либо одной координате (каким-либо одним измерением). Расстояние Чебышева вычисляется по формуле:
расстояние(x,y) = Максимум|xi - yi|
Степенное расстояние. Иногда желают прогрессивно увеличить или уменьшить вес, относящийся к размерности, для которой соответствующие объекты сильно отличаются. Это может быть достигнуто с использованием степенного расстояния. Степенное расстояние вычисляется по формуле:
расстояние(x,y) = ( i |xi - yi|p)1/r
где r и p - параметры, определяемые пользователем. Несколько примеров вычислений могут показать, как "работает" эта мера. Параметр p ответственен за постепенное взвешивание разностей по отдельным координатам, параметр rответственен за прогрессивное взвешивание больших расстояний между объектами. Если оба параметра - r и p, равны двум, то это расстояние совпадает с расстоянием Евклида.
Процент несогласия. Эта мера используется в тех случаях, когда данные являются категориальными. Это расстояние вычисляется по формуле:
расстояние(x,y) = (Количество xi yi)/ i
Правила объединения или связи
На первом шаге,
когда каждый объект представляет собой
отдельный кластер, расстояния между
этими объектами определяются выбранной
мерой. Однако когда связываются
вместе несколько объектов, возникает
вопрос, как следует определить расстояния
между кластерами? Другими словами,
необходимо правило объединения
или связи для двух кластеров.
Здесь имеются различные
Одиночная связь (метод ближайшего соседа). Как было описано выше, в этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Это правило должно, в известном смысле, нанизывать объекты вместе для формирования кластеров, и результирующие кластеры имеют тенденцию быть представленными длинными "цепочками".
Полная связь (метод наиболее удаленных соседей). В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Этот метод обычно работает очень хорошо, когда объекты происходят на самом деле из реально различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод непригоден.
Метод Варда. Этот метод отличается от всех других методов, поскольку он использует методы дисперсионного анализа для оценки расстояний между кластерами. Метод минимизирует сумму квадратов (SS) для любых двух (гипотетических) кластеров, которые могут быть сформированы на каждом шаге. Подробности можно найти в работе Варда (Ward, 1963). В целом метод представляется очень эффективным, однако он стремится создавать кластеры малого размера.
Для обзора других
методов кластеризации, см. Двухвходовое
объединение и Метод K
средних.
Метод K средних
Общая логика
Этот метод
кластеризации существенно
Пример
В примере с
физическим состоянием (см. Двувходовое
объединение),
медицинский исследователь может иметь
"подозрение" из своего клинического
опыта, что его пациенты в основном попадают
в три различные категории. Далее он может
захотеть узнать, может ли его интуиция
быть подтверждена численно, то есть, в
самом ли деле кластерный анализ K средних
даст три кластера пациентов, как ожидалось?
Если это так, то средние различных мер
физических параметров для каждого кластера
будут давать количественный способ представления
гипотез исследователя (например, пациенты
в кластере 1 имеют высокий параметр 1,
меньший параметр 2 и т.д.).