Автор: Пользователь скрыл имя, 20 Февраля 2012 в 12:58, реферат
До недавнего времени большинство исследователей традиционно считали, что клетки прокариот достаточно однообразны и в подавляющем большинстве имеют форму сферы, цилиндра или спирали. Они бывают одиночными, в иных случаях образуют нити или колонии. Прокариоты сферической формы, называемые кокками, могут после деления не расходиться.
Рис. 14. Способы деления и синтез клеточной стенки у прокариот: А — деление путем образования поперечной перегородки; Б — деление путем перетяжки; В — почкование; Г — множественное деление: 1 — клеточная стенка (толстой линией обозначена клеточная стенка материнской клетки, тонкой — заново синтезированная); 2 — ЦПМ; 3 — мембранная структура; 4 — цитоплазма, в центре которой расположен нуклеоид; 5 — дополнительный фибриллярный слой клеточной стенки
Бинарное деление может
Для одной группы одноклеточных цианобактерий описано размножение путем множественного деления. Оно начинается с предварительной репликации хромосомы и увеличения размеров вегетативной клетки, которая затем претерпевает ряд быстрых последовательных бинарных делений, происходящих внутри дополнительного фибриллярного слоя материнской клеточной стенки. Это приводит к образованию мелких клеток, получивших название баеоцитов 12, число которых у разных видов колеблется от 4 до 1000. Освобождение баеоцитов происходит путем разрыва материнской клеточной стенки. Таким образом, в основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению.
Деление прокариотной клетки начинается, как правило, спустя некоторое время после завершения цикла репликации молекулы ДНК. Вероятно, репликация бактериальной хромосомы запускает какие-то процессы, ведущие к клеточному делению. Более детальное изучение у разных видов прокариот взаимосвязи между репликацией ДНК и делением клетки не привело к однозначным результатам. Получены данные о том, что сигналом к клеточному делению служит начало репликации ДНК, ее завершение или репликация определенного локуса бактериальной хромосомы. Таким образом, в норме существует вполне определенная временная связь между репликацией хромосомы и делением бактериальной клетки. Воздействия различными химическими веществами и физическими факторами, приводящие к подавлению репликации ДНК, останавливают и клеточное деление. Однако при некоторых условиях связь между обоими процессами может быть нарушена, и клетки способны делиться в отсутствие синтеза ДНК. Это удалось получить введением определенных мутаций в генетический аппарат бактериальной клетки.
Нарушить последовательность процессов репликации бактериальной хромосомы и клеточного деления также можно, выращивая бактерии при разной температуре. Культивирование Bacillus subtilis на богатой питательной среде при 37° приводит к интенсивному делению бактериальной хромосомы и росту клеток, в результате чего в культуре образуются нитевидные клетки, содержащие множество хромосомных копий с отсутствующими совсем или недосформированными (незамкнутыми) поперечными перегородками. При замедлении скорости роста наблюдается деление нитевидных клеток, приводящее к образованию бактериальных клеток нормальной длины.
Запасные вещества прокариот представлены полисахаридами, липидами, полипептидами, полифосфатами, отложениями серы. Из полисахаридов в клетках откладываются гликоген, крахмал и крахмалоподобное вещество— гранулеза. Последняя — специфический запасной полисахарид анаэробных споровых бактерий группы клостридиев. Названные полисахариды построены из остатков глюкозы. В неблагоприятных условиях они используются в качестве источника углерода и энергии.
Запасное вещество |
Структурные характеристики |
Химический состав |
Функции |
Распространение |
Гранулы гликогена (a-гранулы) |
сферической формы, диаметр 20–100 нм |
высокомолекулярные полимеры глюкозы |
источник углерода и энергии |
широко распространенный тип запасных веществ |
Гранулы поли-b-оксимасляной кислоты |
диаметр 100–1000 нм; окружены однослойной белковой мембраной 2–3 нм толщиной |
98% полимера поли-b-оксимасляной кислоты, 2% белка |
источник углерода и энергии |
широко распространены только у прокариот |
Цианофициновые гранулы |
размер и форма различны; могут достигать в диаметре 500 нм |
полипептид, содержащий аргинин и аспарагиновую кислоту (1:1), мол. масса — 25–100x103 Да |
источник азота |
обнаружены у многих видов цианобактерий |
Гранулы полифосфата |
диаметр приблизительно 500 нм, зависит от объекта и условий выращивания |
линейные полимеры ортофосфата |
источник фосфора и, возможно, энергии |
распространенный тип запасных гранул |
Гранулы серы |
диаметр 100–800 нм; окружены однослойной белковой мембраной толщиной 2–3 нм |
включения жидкой серы |
донор электронов или источник энергии |
пурпурные серобактерии, бесцветные бактерии, окисляющие H2S |
Углеводородные гранулы |
диаметр 200–300 нм; окружены белковой оболочкой 2–4 нм толщиной |
углеводороды того же типа, что и в среде |
источник углерода и энергии |
представители родов Arthrobacter, Acinetobacter, Mycobacterium, Nocardia и другие прокариоты, использующие углеводороды |
Липиды накапливаются в виде гранул, резко преломляющих свет и поэтому хорошо различимых в световой микроскоп. Запасным веществом такого рода является полимер b-оксимасляной кислоты, накапливающийся в клетках многих прокариот. У некоторых бактерий, окисляющих углеводороды, поли-b-оксимасляная кислота составляет до 70% сухого вещества клеток. Отложение липидов в клетке происходит в условиях, когда среда богата источником углерода и бедна азотом. Липиды служат для клетки хорошим источником углерода и энергии.
Другой широко распространенный тип запасных веществ многих прокариот — полифосфаты, содержащиеся в гранулах, называемых волютиновыми, или метахроматиновыми, зернами. Используются клетками как источник фосфора. Полифосфаты содержат макроэргические связи и, таким образом, являются депо энергии, хотя считается, что их роль как источника энергии незначительна.
Специфическим запасным веществом цианобактерий являются цианофициновые гранулы. Химический анализ показал, что они состоят из полипептида, содержащего аргинин и аспарагиновую кислоту в эквимолярных количествах. Остов молекулы построен из остатков аспарагиновой кислоты, соединенных пептидными связями, а к ее b-карбоксильным группам присоединены остатки аргинина. Для синтеза цианофицина необходимы затравка, молекулы АТФ, ионы К+ и Mg2+. Процесс не закодирован в иРНК и не связан с рибосомами. Появление цианофициновых гранул при культивировании цианобактерий в среде с азотом и их исчезновение при истощении среды по азоту указывают на то, что они в клетке служат резервом азота, мобилизуемым при его недостатке в среде.
Для прокариот, метаболизм которых
связан с соединениями серы, характерно
отложение в клетках
Обращает внимание, что все запасные вещества представлены в виде высокомолекулярных полимерных молекул, в ряде случаев отграниченных от цитоплазмы белковой мембраной, т. е. находятся в осмотически неактивном состоянии. Это важно, так как в противном случае сосредоточение в цитоплазме большого числа молекул осмотически активных веществ оказало бы на клетку отрицательное действие.
2. Представители бактерий и их значение в природе и хозяйственной деятельности человека
Положительное значение бактерий молочнокислого брожения (гетеротрофных сапрофитов) используется при приготовлении молочнокислых продуктов (творог, простокваша, масло, сметана), силосовании кормов, закваске капусты, засолке огурцов и помидоров. Отрицательное значение состоит в порче продуктов.
Положительное значение бактерий уксуснокислого брожения (гетеротрофных сапрофитов) состоит в окислении спирта в уксусную кислоту, которая применяется для маринования, консервирования плодов и овощей. Отрицательное значение состоит в порче продуктов.
Гнилостные бактерии (гетеротрофные сапрофиты) могут играть положительную санитарную роль по минерализации органических остатков. Отрицательное значение состоит в порче продуктов. Во избежание гниения применяют сушку, соление, маринование, стерилизацию, пастеризацию, засахаривание.
Болезнетворные бактерии (гетеротрофные паразиты) вызывают инфекционные заболевания человека, животных. Для борьбы с ними применяют антибиотики, бактериофаги, прививки, а также организуют работу по ликвидации очагов заражения, закаливают организм, соблюдают правила санитарии и гигиены организма.
Клубеньковые бактерии (гетеротрофные симбионты) проникают в корни бобовых растений (клевер, люпин, люцерна и др.) и вступают с ними в симбиоз. В результате на корнях образуются опухоли — клубеньки, заполненные бактериями, которые из атмосферного азота синтезируют азотистые соединения для себя и растения-хозяина.
Роль микробов в природе и
жизни человека. Использование
Микробиологические
Микробиологические
Разработка наиболее рациональных приемов использования микробов в хозяйственной деятельности человека и сознательная селекция микробов стали возможны только после разработки микроскопических методов изучения и выяснения способов расселения и размножения микроорганизмов.
Основная заслуга в успешном разрешении этих вопросов принадлежит гениальному французскому ученому Луи Пастеру (Pasteur, 1822-1895) , подлинному создателю научной селекции микробов, основанной на сознательном применении методического искусственного отбора и умелом использовании естественного отбора путем создания условий, в которых отбор действует в желательном для селекционера направлении. Дальнейшее усовершенствование селекции микробов тесно связано с достижениями генетики и использованием этих достижений в селекции.
Г. А. Надсон (1920) в результате ряда тщательно выполненных опытов еще в 1920 г. показал, что ионизирующая радиация вызывает у грибов и бактерий стойкие наследственные изменения. Он выделил таким путем у Azotobacter chroococcum штаммы, отличающиеся повышенной способностью ассимилировать атмосферный азот.
В начале 40-х годов Бидл и Татум (Beadle & Tatum, 1941) , использовав ионизирующую радиацию для вызывания мутаций у микробов, получили у гриба Neurospora crassa значительное количество мутантов с измененным обменом веществ и повышенными требованиями к питательным веществам. Эти исследования привели к созданию биохимической генетики и оказали очень сильное влияние на усовершенствование селекции микробов.
В настоящее время в селекции микробов существуют три основных направления:
Селекция на повышение устойчивости к ядам, антибиотикам и на понижение требований к составу питательной среды; Селекция на повышение накопления полезных веществ; Селекция на повышение требований к ростовым веществам.
3. Раскрыть свойства м/в как основных объектов биотехнологии и их применение
Главным звеном биотехнологического процесса, определяющим всю его сущность, является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехнологии могут выступать клетки микроорганизмов, животных и растений, трансгенные животные и растения, а также многокомпонентные ферментные системы клеток и отдельные ферменты.
Основой большинства современных биотехнологических производств до сих пор все еще является микробный синтез, т. е. синтез разнообразных биологически активных веществ с помощью микроорганизмов. К сожалению, объекты растительного и животного происхождения в силу ряда причин еще не нашли столь широкого применения.
Независимо от природы объекта, первичным этапом разработки любого биотехнологического процесса является получение чистых культур организмов (если это микробы), клеток или тканей (если это более сложные организмы – растения или животные). Многие этапы дальнейших манипуляций с последними (т.е. с клетками растений или животных), по сути дела, являются принципами и методами, используемыми в микробиологических производствах. И культуры микробных клеток, и культуры тканей растений и животных с методической точки зрения практически не отличаются от культур микроорганизмов. Поэтому дальнейшие рассуждения целесообразно вести применительно к микробиологическим объектам.