Контрольная работа по "Биологии и морфологии"

Автор: Пользователь скрыл имя, 11 Сентября 2011 в 13:35, контрольная работа

Описание работы

1.Значение зоологии в сельском хозяйстве.
2. Клещи: систематика, биология и хозяйственное значение.
1.Включения клетки. Их связь со специализацией клетки.
2. Особенности дробления и ранних стадий развития млекопитающих. Роль трофобласта в питании зародыша

Работа содержит 1 файл

курсовая биология.doc

— 126.00 Кб (Скачать)

4). Стадия питания и дыхания с помощью сосудов аллантоиса (24-34-е сутки). За счет аллантоиса, хориона и трофобласта образуются ворсинки, формируется плацента.

Из светлых  клеток образуется окружающий зародыш  трофобласт, клетки которого выполняют вспомогательную роль и непосредственно в образовании тела зародыша не принимают участия. Клетки трофобласта способны растворять ткани, благодаря чему зародыш внедряется (имплантируется) в стенку матки. Далее клетки трофобласта отслаиваются от клеток зародыша, образуя вокруг него пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Из темных клеток образуется эмбриобласт, имеющий вид узелка. В результате дальнейшего дробления эмбриобласта зародыш принимает форму диска, распластанного на внутренней поверхности трофобласта. Эта стадия развития зародыша, когда выделяются трофобласт и эмбриобласт, называется  бластоцистой. Бластоциста, попав в полость матки, имплантируется, получая питательные вещества из стенки матки. Клетки трофобласта дифференцируются на два слоя. Из клеток наружного слоя трофобласта образуются  ворсинки трофобласта, которые врастают в эпителий матки. Этот слой с ворсинками образует самую наружную оболочку зародыша - хорион. Хорион играет важную роль в питании развивающегося зародыша и удалении его конечных продуктов обмена.

3. Мейоз. Его отличия от митоза.

 Главное отличие  мейоза от митоза - конъюгация гомологичных хромосом с последующим расхождением их в разные гаметы. Точность расхождения обусловлена точностью конъюгации, а последняя - идентичностью молекулярной структуры ДНК гомологов. Доказано независимое расхождение негомологичных хромосом в профазе I деления мейоза. Это означает, что любая отцовская хромосома может попасть в гамету с любой, в крайнем варианте - со всеми материнскими негомологичными хромосомами. Однако если речь идет о дочерних хромосомах (во II делении мейоза), образовавшихся из перекрещенных, т. е. претерпевших кроссинговер, или кроссоверных хроматид, то их, строго говоря, нельзя рассматривать ни как чисто отцовские, ни как чисто материнские.

4. Общая характеристика группы опорно-трофических тканей.

К опорно-трофическим  тканям относятся самые разнообразные  ткани по структуре и функции: кровь, лимфа, собственно соединительные ткани, хрящ, кость. Все они происходят из эмбриональной соединительной ткани - мезенхимы и находятся во внутренней среде организма.

Все ткани данной группы состоят из клеток и межклеточного вещества и обильно снабжаются кровью. Клетки соединительной ткани не имеют полярности. Межклеточное вещество по массе превышает массу клеток и является продуктом их жизнедеятельности, с их помощью в них происходит обмен веществ. У тканей с жидким межклеточным веществом (кровь и лимфа) основными функциями являются трофическая и защитная. Чем плотнее межклеточное вещество, тем больше преобладает функция механической защиты и опоры. В наибольшей степени опорная функция развита у костной ткани, имеющей минерализованное твердое межклеточное вещество.

Опорно-трофические  ткани выполняют следующие функции:

1). трофическую – участие в обмене веществ;

2). транспортную – перенос веществ;

3). защитную – способность клеток к фагоцитозу и участие в иммунных реакциях;

4). регуляторную – участие в регуляции обменных процессов с помощью биологически активных веществ, циркулирующих в крови;

5). опорную и механической защиты.

В связи с  особенностями строения и функции  опорно-трофические ткани делят  на две группы: ткани с жидким межклеточным веществом, т.е. кровь и лимфу, и ткани с плотным межклеточным веществом, т.е. соединительные ткани. Соединительные ткани в свою очередь делятся на костную и хрящевую ткани и собственно соединительные ткани. Собственно соединительные ткани бывают волокнистые и со специальными свойствами. Все разновидности опорно-трофических тканей способны быстро восстанавливаться (регенерировать) и приспосабливаться к меняющимся условиям внешней среды.

5.Сперматогенез и его стадии. Строение спермиев.

Сперматогенез (от греч. sperma, родительный падеж spermatos — семя и ...генез), процесс превращения диплоидных мужских половых клеток животных и многих растений в гаплоидные, свободные и очень дифференцированные клетки — сперматозоиды. Различают 4 периода С.: размножение, рост, деления созревания и формирование, или спермиогенез (спермиотелиозис). В 1-м периоде диплоидные исходные мужские половые клетки (сперматогонии) несколько раз делятся путём митоза (число делений у каждого вида постоянно). Во 2-м периоде половые клетки (сперматоциты 1-го порядка) увеличиваются в размерах, а ядро их проходит длительную профазу, во время которой совершается конъюгация гомологичных хромосом и кроссинговер, сопровождающийся обменом участками между гомологичными хромосомами, и образуются тетрады. В 3-м периоде происходят два деления созревания (мейоз), осуществляется редукция или уменьшение числа хромосом вдвое (при этом в одних тетрадах при первом делении к полюсам веретена расходятся гомологичные хромосомы, при втором — хроматиды, а в других, наоборот, — сначала хроматиды, затем гомологичные хромосомы). Таким образом, каждый сперматоцит 1-го порядка даёт 2 сперматоцита 2-го порядка, которые после второго деления образуют 4 одинаковые по размерам гаплоидные клетки — сперматиды. Последние не делятся, вступают в 4-й период С., или спермиогенез, и превращаются в сперматозоиды: сперматида из округлой становится вытянутой, происходит новообразование одних структур (акросома, побочное ядро, жгутик и т. д.), исчезновение других (рибосомы, эндоплазматический ретикулум и т.д.) и перемещение многих органелл внутри клетки, называют телокинетическими движениями. Большая часть цитоплазмы исчезает из клетки. Вытянутое ядро с конденсированным хроматином и акросомой (производное аппарата Гольджи) размещаются на апикальном полюсе клетки и образуют головку сперматозоида; центриоль ложится обычно у базального полюса ядра, от неё берёт начало жгутик; митохондрии окружают центриоль или формируют т. н. побочное ядро, расположенное в промежуточном отделе сперматозоида. Строение спермия

Большая часть  цитоплазмы спермия элиминируется  при его созревании. Сохраняются только некоторые органеллы, видоизмененные для выполнения своей функции. В период созревания спермия его гаплоидное ядро приобретает обтекаемую форму, а ДНК уплотняется. Впереди от такого конденсированного гаплоидного ядра лежит акросомный пузырек, происшедший из аппарата Гольджи и содержащий ферменты, которые переваривают белки и полисахариды. Запас ферментов в акросомном пузырьке служит для проникновения спермия через наружные покровы яйца. У морских ежей между ядром и акросомным пузырьком находится область, содержащая глобулярный актин. Он используется для образования пальцеобразного выроста. У таких видов молекулы на поверхности акросомного выроста участвуют в узнавании спермием и яйцом друг друга. Акросома и ядро образуют вместе головку спермия.

Акросома, производное  аппарата Гольджи, имеет свою мембрану, в которой выделяют следующие  части: наружную, промежуточную, внутреннюю (прилежащую к ядру), в последней  выделяют инвагинационные трубочки, их 15. Внутри акросомы находится акросомальная гранула, она не имеет своей мембраны. Внутри акросомы есть ферменты: гиалуронидаза и трипсин. Они воздействуют на оболочку яйцеклетки: гиалуронидаза растворяет блестящую оболочку яйцеклетки, трипсин нарушает целостность фолликулярной оболочки. Главная двигательная основа жгутика – аксонема. Она берет начало от дистальной центриоли, которая находится в шейке. Осевая нить проходит через весь вставочный отдел и через весь хвостик. Во вставочном отделе вокруг аксонемы находится спиральная структура, которая образуется 12–15 витками митохондрий.

Стержень аксонемы состоит из 2-х центральных одиночных  микротрубочек, окруженных кольцом  из девяти двойных микротрубочек (дуплетов). При этом только одна микротрубочка  каждого дуплета имеет законченное  строение и содержит 13 протофиламентов, тогда как вторая состоит из 11 протофиламентов димерного белка тубулина. С микротрубочками связан белок динеин. С его помощью гидролизуются молекулы АТФ и преобразуется выделившаяся при этом химическая энергия в механическую, за счет которой осуществляется движение спермиев. Мужчины с генетическим синдромом отсутствия динеина во всех клетках, обладающих ресничками и жгутиками, характеризуются следующим (триада Картедженера): они стерильны (из-за неподвижности спермиев), подвержены респираторным инфекциям (из-за неподвижности ресничек мерцательного эпителия, выстилающего дыхательные пути), у них в 50 % случаев сердце располагается с правой стороны.

6. Какие ткани входят в состав кости как органа? Развитие трубчатой кости. Костная ткань бывает ретикулофиброзной и пластинчатой.

Ретикулофиброзная (грубоволокнистая) костная ткань

Ретикулофиброзная костная ткань (textus osseus reticulofibrosus) встречается главным образом у зародышей. У взрослых ее можно обнаружить на месте заросших черепных швов, в местах прикрепления сухожилий к костям. Беспорядочно расположенные коллагеновые волокна образуют в ней толстые пучки, отчетливо заметные микроскопически даже при небольших увеличениях. В основном веществе ретикулофиброзной костной ткани находятся удлиненно-овальной формы костные лакуны с длинными анастомозирующими канальцами, в которых лежат остеоциты с их отростками. С поверхности грубоволокнистая кость покрыта надкостницей.

Пластинчатая  костная ткань. Пластинчатая костная ткань (textus osseus lamellaris) — наиболее распространенная разновидность костной ткани во взрослом организме. Она состоит из костных пластинок (lamellae ossea). Толщина и длина последних колеблется от нескольких десятков до сотен микрометров. Они не монолитны, а содержат фибриллы, ориентированные в различных плоскостях. В центральной части пластин фибриллы имеют преимущественно продольное направление, по периферии — прибавляется тангенциальное и поперечное направления. Пластинки могут расслаиваться, а фибриллы одной пластинки могут продолжаться в соседние, создавая единую волокнистую основу кости. Кроме того, костные пластинки пронизаны отдельными фибриллами и волокнами, ориентированными перпендикулярно костным пластинкам, вплетающимися в промежуточные слои между ними, благодаря чему достигается большая прочность пластинчатой костной ткани. Из этой ткани построены и компактное, и губчатое вещества в большинстве плоских и трубчатых костей скелета.

Гистологическое строение трубчатой кости как  органа.

Трубчатая кость  как орган в основном построена из пластинчатой костной ткани, кроме бугорков. Снаружи кость покрыта надкостницей, за исключением суставных поверхностей эпифизов, покрытых гиалиновым хрящем. Надкостница, или периост (periosteum). В надкостнице различают два слоя: наружный (волокнистый) и внутренний (клеточный). Наружный слой образован в основном волокнистой соединительной тканью. Внутренний слой содержит остеогенные камбиальные клетки, преостеобласты и остеобласты различной степени дифференцировки. Камбиальные клетки веретеновидной формы имеют небольшой объем цитоплазмы и умеренно развитый синтетический аппарат. Преостеобласты — энергично пролиферирующие клетки овальной формы, способные синтезировать мукополисахариды. Остеобласты характеризуются сильно развитым белоксинтезирующим (коллаген) аппаратом. Через надкостницу проходят питающие кость сосуды и нервы.

Надкостница связывает  кость с окружающими тканями  и принимает участие в ее трофике, развитии, росте и регенерации.

7. Строение хромосом. Понятие о кариотипе.

Морфологию хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки, которая делит хромосому на два плеча (рис). Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины - субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом - акроцентрические.  
 
В области первичной перетяжки расположена центромера, или кинетохор. Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. От него отрастают пучки микротрубочки митотического веретена, идущие в направлении к центриолям. Они принимают участие в движении хромосом к полюсам клетки при митозе. Обычно одна хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические и полицентрические. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК.  
Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков, которые могут присоединяться к таким же разорванным концам других хромосом. Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0, 2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1, 5-10 мкм.

Кариотип –  это набор хромосом соматической клетки, свойственный тому или иному  виду животных или растений. Он включает все особенности хромосомного комплекса: число хромосом, их форму, наличие  видимых под световым микроскопом  деталей строения отдельных хромосом. Число хромосом в кариотипе всегда четное. Это объясняется тем, что в соматических клетках находятся две одинаковые по форме и размеру хромосомы – одна из отцовского организма, вторая – от материнского.

Информация о работе Контрольная работа по "Биологии и морфологии"