Автор: Пользователь скрыл имя, 11 Ноября 2010 в 19:17, реферат
Характеристика элементов VI подгруппы. История открытия кислорода. Биологическая роль кислорода. Физические и химические свойства кислорода. Применение кислорода.
Ф. Энгельс об открытии
К. Шееле и Д. Пристли писал: оба
«они не знали, чтоб оказалось у них
в руках... Элемент, которому суждено
было ниспровергнуть все флогистонные
воззрения и
Освобождение химии от теории флогистона произошло в результате введения в химию точных методов исследования, начало которым было положено трудами М. В. Ломоносова. В 1745—1748 гг. М. В. Ломоносов экспериментально доказал, что горение — это реакция соединения веществ с частицами воздуха.
Десять лет (1771—1781)
были потрачены французским химиком
Антуаном Лавуазье на подтверждение
справедливости теории горения как
химического взаимодействия различных
веществ с кислородом. Приступая
к изучению явлений горения и
«обжигания» металлов, он писал: «Я
предполагаю повторить все
Остаток воздуха
в реторте, который не участвовал
в реакции, стали называть азотом,
что означало безжизненный (в переводе
с греч. «а» — отрицание, «зое»
— жизнь). Газ, образовавшийся в результате
разложения «ртутной окалины», проявлял
противоположные азоту свойства
— поддерживал дыхание и
Итак, в 1777 г. была выяснена сущность горения. И надобность во флогистоне—«огненной материи» — отпала. Кислородная теория горения пришла на смену флогистонной.
IV. Биологическая роль кислорода.
Кислород — самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1 500 соединений земной коры.
Кислород в атмосфере
Земли начал накапливаться в
результате деятельности первичных
фотосинтезирующих организмов, появившихся,
вероятно, около 2,8 млрд. лет назад. Полагают,
что 2 млрд. лет назад атмосфера
уже содержала около 1% кислорода;
постепенно из восстановительной она
превращалась в окислительную и
примерно 400 млн. лет назад приобрела
современный состав. Наличие в
атмосфере кислорода в
Кислород — основной
биогенный элемент, входящий в состав
молекул всех важнейших веществ,
обеспечивающих структуру и функции
клеток — белков, нуклеиновых кислот,
углеводов, липидов, а также множества
низкомолекулярных соединений. В
каждом растении или животном кислорода
гораздо больше, чем любого другого
элемента (в среднем около 70%). Мышечная
ткань человека содержит 16% кислорода,
костная ткань — 28.5%; всего в
организме среднего человека (масса
тела 70 кг) содержится 43 кг кислорода. В
организм животных и человека кислород
поступает в основном через органы
дыхания (свободный кислород) и с
водой (связанный кислород). Потребность
организма в кислороде
Небольшие количества кислорода используют в медицине: кислородом (из так называемых кислородных подушек) дают некоторое время дышать больным, у которых затруднено дыхание. Нужно, однако, иметь в виду, что длительное вдыхание воздуха, обогащенного кислородом, опасно для здоровья человека. Высокие концентрации кислорода вызывают в тканях образование свободных радикалов, нарушающих структуру и функции биополимеров. Сходным действием на организм обладают и ионизирующие излучения. Поэтому понижение содержания кислорода (гипоксия) в тканях и клетках при облучении организма ионизирующей радиацией обладает защитным действием — так называемый кислородный эффект. Этот эффект используют в лучевой терапии: повышая содержание кислорода в опухоли и понижая его содержание в окружающих тканях усиливают лучевое поражение опухолевых клеток и уменьшают повреждение здоровых. При некоторых заболеваниях применяют насыщение организма кислородом под повышенным давлением — гипербарическую оксигенацию.
V. Физические и химические свойства кислорода.
Химический элемент кислород образует два простых вещества - кислород О2 и О3 различные по физическим свойствам.
Кислород О2— газ, не имеющий цвета и запаха. Молекула его О2. Она парамагнитна (притягивается магнитом), так как в ней содержатся два неспаренных электрона. Строение молекулы кислорода можно представить в виде следующих структурных формул:
О — О или О — О
Атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) — парамагнитное вещество, в каждой молекуле О2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух -разрыхляющих орбиталей находится по одному неспаренному электрону.
Энергия диссоциации молекулы О2 на атомы довольно высока и составляет 493,57 кДж/моль.
Молекула кислорода
О2 довольно инертна. Устойчивость молекулы
кислорода и высокая энергия
активации большинства реакций
окисления обусловливают то, что
при низкой и комнатной температурах
многие реакции с участием кислорода
протекают с едва заметной скоростью.
Только при создании условий для
появления радикалов
При нормальных условиях плотность газа кислорода 1,42897 кг/мЗ. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) -182,9°С. При температурах от -218,7°С до -229,4°С существует твердый кислород с кубической решеткой (-модификация), при температурах от -229,4°С до -249,3°С — -модификация с гексагональной решеткой и при температурах ниже -249,3°С — кубическая -модификация. При повышенном давлении и низких температурах получены и другие модификации твердого кислорода.
При 20°С растворимость
газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл
этанола, 23,1 мл на 100 мл ацетона. Существуют
органические фторсодержащие жидкости
(например, перфторбутилтетрагидрофуран),
в которых растворимость
Высокая прочность
химической связи между атомами
в молекуле О2приводит к тому, что
при комнатной температуре
Со многими веществами
кислород вступает во взаимодействие
без нагревания, например, с щелочными
и щелочноземельными металлами (образуются
соответствующие оксиды типа Li2O, CaO
и др., пероксиды типа Na2О2, BaO2 и
др. и супероксиды типа КО2, RbО2 и
др.), вызывает образование ржавчины
на поверхности стальных изделий. Без
нагревания кислород реагирует с
белым фосфором, с некоторыми альдегидами
и другими органическими
При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует со взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ.
Обычный атмосферный кислород состоит из смеси трех изотопов: 16О(99,7%), 17О(0,01%), 18О(0,2%). Ввиду того что содержание изотопов 17О и 18О в кислороде небольшое по сравнению с изотопом 16О, атомная масса кислорода принята равной 15,9994 у. е.
В зависимости от природных условий изотопный состав кислорода может изменяться, то обогащаясь тяжелыми изотопами, то обедняясь ими. Так, молекулы воды Н216О переходят в парообразное состояние относительно легче, чем молекулы Н217О и Н218О. Поэтому в состав водяных паров, испаряющихся из моря, входит кислород с относительно меньшим содержанием тяжелых изотопов, чем кислород, остающийся в морской воде.
С помощью атомов тяжелого изотопа кислорода 18О удалось выяснить «происхождение» кислорода, выделяемого растениями в процессе фотосинтеза. Раньше считали, что это кислород, высвобожденный из молекул оксида углерода, а не воды. В настоящее время стало известно, что растения связывают кислород оксида углерода, а в атмосферу возвращают кислород из воды.
Кислород образует соединения со всеми элементами, кроме некоторых благородных газов (гелия, неона, аргона). Так, с большинством металлов кислород реагирует уже при комнатной температуре, например:
2Na° + О2° = Na2+102-2
Na° -1(ё) Na+1 2 восстановитель
O2° +2(ё) 2 2O-2 окислитель
2Zn° + O2° = 2Zn+2O-2
Zn° -2(ё) Zn+2 восстановитель
O2° +2(ё) 2 2O-2 окислитель
С неметаллами кислород реагирует, как правило, при нагревании. Так, с фосфором кислород активно реагирует при температуре 60°С:
4Р° + 502° = 2Р2+505-2
P° -5(ё) P+5 2 восстановитель
O2° +2(ё) 2 2O-2 5 окислитель
с серой — при температуре около 250°С:
S° + 02° = S+402-2
S° -4(ё) S+4 восстановитель
O2° +2(ё) 2 2O-2 2 окислитель
с углеродом (в виде графита) — при 700—800°С:
С° + О2° = С+4О2-2
C° -4(ё) C+4 восстановитель
O2° +2(ё) 2 2O-2 2 окислитель
Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде:
N2 + О2 2NO - Q.
Кислород реагирует и со многими сложными соединениями, например, с оксидами азота он реагирует уже при комнатной температуре:
2N+2O + О2° = 2N+4О2-2
N+2 -2(ё)
N+4 1 восстановитель
O2° +2(ё) 2
2O-2 2 окислитель
Сероводород, реагируя с кислородом при нагревании, дает серу:
2H2S-2 + О2° = 2S° + 2Н2О-2
S-2 -2(ё) S° восстановитель
O2° +2(ё) 2 2O-2 окислитель
или оксид серы (IV)
2H2S + ЗО2 = 2SO2 + 2Н2О
в зависимости от соотношения между кислородом и сероводородом.
В приведенных реакциях кислород является окислителем. В большинстве реакций окисления с участием кислорода выделяется тепло и свет — такие процессы называются горением.
Аллотропной модификацией кислорода является озон. Молекула его трехатомна — О3. Строение ее можно представить следующей структурной формулой:
О