Автор: Пользователь скрыл имя, 15 Мая 2013 в 16:33, реферат
Немного истории.^ 25 апреля 1953 г. журнал Nature опубликовал небольшое письмо молодых и никому неизвестных Ф. Крика и Дж. Уотсона редактору журнала, которое начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли ДНК. Эта структура имеет новые свойства, которые представляют большой биологический интерес».
ГЕНОМ ЧЕЛОВЕКА
Немного истории.^ 25 апреля 1953 г. журнал Nature опубликовал небольшое письмо молодых и никому неизвестных Ф. Крика и Дж. Уотсона редактору журнала, которое начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли ДНК. Эта структура имеет новые свойства, которые представляют большой биологический интерес». Статья содержала около 900 слов, но - и это не преувеличение - каждое из них было на вес золота. «Ершистая молодежь» посмела выступить против нобелевского лауреата Лайнуса Полинга, автора знаменитой альфа-спирали белков. Полинг буквально накануне опубликовал статью, согласно которой ДНК представляла собой трехцепочечную спиральную структуру, наподобие девичьей косы. Тогда никто не знал, что у Полинга был просто недостаточно очищенный материал. Но и Полинг оказался отчасти прав: сейчас трехцепочечность некоторых участков наших генов хорошо известна. Это свойство ДНК даже пытались одно время использовать в борьбе с раком, выключая с помощью олиго-нуклеотидов те или иные раковые гены (онкогены).
Биологии нуклеиновых кислот долго не везло. Достаточно сказать, что первую нобелевскую премию за открытие строения нуклеотидов немец А. Коссель получил еще в 1910 г. А знаменитая реакция Фельгена для окрашивания ДНК была предложена накануне Первой мировой войны и усовершенствована в 1920-е гг. Тогда и могла бы начаться новая эра биологии, однако...Однако биологи были уверены, что «монотонная» ДНК с ее только четырьмя различающимися основаниями просто не могла нести генетическую информацию о миллионах самых разнообразных белков. И хотя уже применялась азбука Морзе с тремя кодирующими элементами, менталитет исследователей еще не достиг уровня информационной эры с ее двоичной системой записи («0» и «1») любой информации. Лишь к началу 1950-х гг. отдельные ученые стали обращать внимание на ДНК, роль которой в передаче наследственных признаков у микроорганизмов установил в 1943 г. Освальд Эйвери. Результатам Эйвери поверил Сальвадор Лурия, который вместе с Максом Дельбрюком организовал неподалеку от Нью- Йорка лабораторию на биостанции в местечке Колд-СпрингХарбор. Заметим в скобках, что физик М. Дельбрюк был учеником Н. В. Тимофеева-Ресовского в биологии и соавтором их совместной с К. Циммером знаменитой статьи, посвященной определению размеров гена. Лурия с Дельбрюком изучали жизненный цикл бактериофагов - вирусов микроорганизмов, в результате чего и пришли к предположениям о биологической роли ДНК. Лурия послал своего аспиранта Джеймса Уотсона в Кавендишскую лабораторию в Кембридже, где Морис Уилкинс и Розалинд Франклин исследовали строение ДНК с помощью рентгена (англичане лидировали в рентгеноструктурном анализе биомолекул). В лаборатории Уилкинса работал также еще довольно молодой физик Фрэнсис Крик, известный в узких лабораторных кругах своим научным скепсисом: для него просто не существовало никаких авторитетов, чем он и заработал себе репутацию скандалиста. Статью Полинга в лабораторию принес его сын, который помог, кстати, Уотсону и Крику уяснить роль попарного комплементарного соединения азотистых оснований. Статья стала последней каплей перед озарением, или пониманием, тем, что оформилось в открытие молодых ученых. Научное сообщество, однако, не сразу признало их открытие. Достаточно сказать, что сначала Нобелевскую премию за работы в области ДНК «судьи» из Стокгольма присудили в 1959 г. известным американским биохимикам Северо Очоа и Артуру Корнбергу. Очоа был первым (1955), кто сумел синтезировать рибонуклеиновую кислоту (РНК). Корнбергже получил премию за синтез ДНК в пробирке (1956). В 1962 г. настал черед Крика, Уотсона и Уилкинса. Р.Франклин к тому времени уже умерла от рака в возрасте 37 лет, иначе это был бы единственный случай в истории Нобелевских премий, когда награду вручили бы четверым, хотя это и не допускается уставом. Вклад Франклин в развитие рентгено-структурного анализа ДНК был просто неоценим. После открытия Уотсона и Крика важнейшей проблемой стало выявление соответствия между первичными структурами ДНК и белков. Поскольку в составе белков обнаруживается 20 аминокислот, а нуклеиновых оснований всего 4, то для записи информации о последовательности аминокислот в полинуклеотидах необходимо не менее трех оснований. На основании таких общих рассуждений варианты «трехбуквенных» генетических кодов предложили физик Г. Гамов и биолог А. Нейфах. Однако их гипотезы были чисто умозрительными и не вызвали большого отклика среди ученых. Трехбуквенный генетический код к 1964 г. расшифровал Ф.Крик. Вряд ли он тогда предполагал, что в обозримом будущем станет возможной расшифровка генома человека. Эта задача долгое время казалась неразрешимой. Однако два открытия позволили сдвинуть проблему с места.
В 1970 г. не известные широкой научной общественности Г. Темин и Д. Балтимор опубликовали в Nature статьи, посвященные обратной транскриптазе (ОТ) - ферменту РНК-содержащих, в том числе раковых, вирусов, которые синтезируют ДНК на матрице РНК, т. е. осуществляют реакцию, обратную той, которую до тех пор наблюдали в клетках. Открытие обратной транскриптазы позволило выделить первые гены. Но процесс этот был крайне трудоемким и чрезвычайно дорогим. А спустя 15 лет некий химик из Калифорнии предложил на суд коллег уникальную полимеразную цепную реакцию (ПЦР), сразу же ставшую знаменитой. В этой реакции фермент, полимераза, «ходит как челнок» по фрагменту ДНК, поэтому ПЦР позволяет нарабатывать любые количества этого фрагмента, необходимые для анализа. ПЦР, а также появление новейшей электронной техники и компьютеров сделали вполне реальной задачу расшифровки всего генома человека. Долгие дебаты закончились в конце сентября 1988 г., когда во главе проекта HUGO - Организации по расшифровке генома человека - был поставлен Дж. Уотсон. Журнал Time назвал в связи с этим Уотсона «охотником за генами». Сам же ученый сказал следующее: «Это захватывающая перспектива. Тридцать лет назад мы не могли и мечтать о том, чтобы узнать структуру генома даже мельчайшего вируса. А сегодня мы уже расшифровали геном вируса СПИДа и почти полностью прочитали геном кишечной палочки объемом в 4,5 млн букв ген- кода. Точное знание детальной структуры генома человека - это восхитительно!».
И вот геном прочитан. Завершение работ по расшифровке генома человека консорциумом ученых планировалось к 2003 г. - 50-летию открытия структуры ДНК. Однако конкуренция сказала свое слово и в этой области. Крейг Вентер основал частную компанию «Селера», которая продает генные последовательности за большие деньги. Включившись в гонку по расшифровке генома, она за один год сделала то, на что у международного консорциума ученых из разных стран ушло десять лет. Это стало возможным благодаря новому методу чтения генетических последовательностей и использованию автоматизации процесса чтения.
Итак, геном прочитан. Казалось бы, надо радоваться, но ученые пришли в недоумение: уж очень мало генов оказалось у человека - примерно в три раза меньше, чем ожидалось. Раньше думали, что генов у нас около 100 тыс., а на самом деле их оказалось около 35 тыс. Но даже не это самое главное. Недоумение ученых понятно: у дрозофилы 13601 ген, у круглого почвенного червя - 19 тыс., у горчицы - 25 тыс. генов. Столь малое количество генов у человека не позволяет выделить его из животного царства и считать «венцом» творения. Основную часть ДНК наших хромосом занимают пустынные участки и так называемые тандемные повторы. В пустынных участках просто-напросто не закодировано никаких генов, а повторы бессмысленны и следуют друг за другом наподобие велосипедов- тандемов, откуда и получили название. ДНК повторов называют также паразитической. Такое презрительное название она получила за то, что ничего не делает в геноме, однако сохраняется и увеличивает массу хромосом. Зато там, где располагаются гены, активность ДНК и ферментов, синтезирующих ее копии в виде молекул информационной РНК, повышается в 200-800 раз! Это - «горячие точки» генома. В геноме человека ученые насчитали 223 гена, которые сходны с генами кишечной палочки. Кишечная палочка возникла примерно 3 млрд лет назад.] Зачем нам такие «древние» гены? Видимо, современные организмы унаследовали от предков какие-то фундаментальные структурные свойства клеток и биохимические реакции, для которых необходимы соответствующие белки. Нет поэтому ничего удивительного и в том, что половина белков млекопитающих имеют сходство аминокислотных последовательностей с белками мухи дрозофилы. В конце концов мы дышим одним и тем же воздухом и потребляем животные и растительные белки, состоящие из одних и тех же аминокислот.,(Удивительно, что с мышью мы имеем 90% общих генов, а с шимпанзе - вообще 99%! В нашем геноме много последовательностей, доставшихся нам в «наследство» от ретровирусов. Эти вирусы, к которым относятся вирусы рака и СПИДа, вместо ДНК в качестве наследственного материала содержат РНК.) Особенностью ретровирусов является, как уже говорилось, наличие обратной транскриптазы. После синтеза ДНК по РНК вируса вирусный геном встраивается в ДНК хромосом клетки. Таких ретровирусных последовательностей у нас много. Время от времени они «вырываются» на волю, в результате чего возникает рак (но рак в полном соответствии с законом Менделр проявляется лишь у рецессивных гомозигот, т. е. не более чем в 25% случаев)/ Совсем недавно было сделано открытие, которое позволяет понять не только механизм встраивания вирусов, но и назначение некодирующих последовательностей ДНК. Оказалось, что для встраивания вируса необходима специфическая последовательность из 14 букв генетического кода. Таким образом, можно надеяться, что вскоре ученые научатся не только блокировать агрессивные ретровирусы, но и целенаправленно «внедрять» нужные гены, и генотерапия из мечты превратится в реальность.
В организме
млекопитающих ретровирусы
Следует учитывать, что в геноме накопилось множество псевдогенов и генов- «перевертышей», которые также неактивны. Похоже, что некодирующие последовательности являются как бы изолятором активных генов. В то же время,