Функции крови

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 10:23, доклад

Описание работы

Система крови поддерживает кислотно-основной, температурный, клеточный гомеостаз, выполняя защитную, транспортную, трофическую, терморегуляторную и другие функции. Защитная функция обеспечивается наличием механизмов свертывания крови с образованием тромба (гемостаз) и его растворением (фибринолиз), наличием групповой специфики крови и различных форм активности лейкоцитов. Гемостаз заключается в максимально быстрой коагуляции, свертывании крови при кровотечениях.

Работа содержит 1 файл

1.docx

— 32.88 Кб (Скачать)

Доклад на тему:

Функции крови

 



 

 

 

 

 

 

 

 

 

 

 




 

 

 

ФУНКЦИИ КРОВИ                                                                                                                                                                                     Система крови поддерживает кислотно-основной, температурный, клеточный гомеостаз, выполняя защитную, транспортную, трофическую, терморегуляторную и другие функции.                                                                         Защитная функция обеспечивается наличием механизмов свертывания крови с образованием тромба (гемостаз) и его растворением (фибринолиз), наличием групповой специфики крови и различных форм активности лейкоцитов. Гемостаз заключается в максимально быстрой коагуляции, свертывании крови при кровотечениях. В нем принимают участие 12 органических и неорганических веществ (факторов), содержащихся в плазме, и 11 содержащихся в клетках крови, а также группа факторов свертывания, содержащихся в стенках кровеносных сосудов и окружающих тканях. В конечном счете образуется тромб - сеть из нитей фибрина (продукта ферментативного превращения фибриногена), заполненная уцелевшими клетками крови. После образования тромба начинается его ретракция (сжатие с выделением сыворотки), а затем фибринолиз (расщепление сгустка). Вместе с тем кровь обладает способностью сохраняться в жидком состоянии благодаря электростатическому отталкиванию клеток крови друг от друга из-за сходства зарядов их поверхностей, а также благодаря содержащимся в ней специальным противосвертывающим веществам-антикоагулянтам нескольких видов. Наиболее известен из них вырабатываемый печенью гепарин. Недостаточная свертываемость вплоть до гемофилии наблюдается при нарушении выработки факторов гемостаза.                                                                    Известно, что при переливании крови от одного человека (донора) к другому (реципиенту) может возникнуть так называемая несовместимость. Она обусловлена взаимодействием антигенов (гликофоринов, моносахаров и остатков сиаловых кислот, находящихся у реципиента на поверхности эритроцитов, см. рис. 3) с одноименными антителами, содержащимися в плазме крови донора. Это стало известно еще в начале XX века благодаря работам Нобелевского лауреата К. Ландштейнера из Вены и Я. Янского из Праги. Результатом взаимодействия одноименных антигенов и антител является агглютинация - склеивание эритроцитов, образование агрегатов, закупоривающих кровеносные сосуды. Этот конгломерат принципиально отличается от тромба.                               Все известные антигены и антитела крови человека объединяются в группы, число которых в настоящее время достигает 50. Распространенные в наибольшем количестве, то есть присутствующие в крови каждого человека, - это варианты системы АВО (I-IV группы), MN и резус. Когда во время операции производится переливание больших порций крови, собранных от нескольких доноров, могут остаться незамеченными минорные, в незначительном количестве содержащиеся группы крови и в таком случае после благополучно проведенной операции может возникнуть тяжелое осложнение - синдром массивных трансфузий. Конфликты, вызываемые встречами несовместимых групп крови, возможны также между организмами матери и развивающегося в ее теле плода.                                                                                                                                                                                                          По мере циркуляции эритроцитов по кровеносным сосудам содержание сиаловых кислот убывает, молекулярная мозаика на поверхности клеток меняется, то есть групповая специфика оказывается нарушенной. Белки-рецепторы в кровеносных сосудах селезенки и печени реагируют на такие клетки как на чужеродные и разрушают их, в частности путем фагоцитоза (рис. 4).                                                                                                                                Важной защитной функцией крови является иммунитет. Различают два основных вида иммунитета: неспецифический или врожденный (к нему относится фагоцитоз) и специфический или приобретаемый в ходе жизни организма (к нему относятся гуморальный и клеточный иммунитет).

 Неспецифический (неадаптивный) иммунитет. Представление о фагоцитозе  появилось в научном обиходе  с 1883 года благодаря трудам  Нобелевского лауреата профессора  И.И. Мечникова. Способность к  фагоцитозу проявляют все лейкоциты,  но в наибольшей степени нейтрофилы  и моноциты, которые по выходе  из кроветворных органов в  кровь недолго в ней задерживаются  и через несколько часов или  суток переходят сквозь стенки  капилляров в окружающие ткани.  Моноциты здесь превращаются  в очень крупные (диаметром  до 25 мкм) макрофаги, действующие  особенно активно в очагах  воспаления. Наибольшую фагоцитарную  активность проявляют нейтрофилы, способные к амебоидному движению со скоростью до 40 мкм/мин. В клетках содержатся ферменты и перекись водорода, с помощью которых происходит переваривание захваченных чужеродных частиц и микробов. Действуя против вирусов, нейтрофилы вырабатывают интерферон. В то время как одна клетка нейтрофила способна захватить до 30 микробных клеток, моноциты - в 3-4 раза больше. Передовая линия защиты организма для всех этих клеток - на границе между вдыхаемым воздухом и эпителием воздухоносных путей, между веществами пищи и кишечным эпителием, в образовавшейся ране. Фагоциты разрушают и собственные клетки тела, которые из-за старости или болезни утратили специфические для данного организма черты и стали чужеродными. Эти формы клеток объединяют в мононуклеарно-фагоцитарную систему (МФС). Продолжительность жизни фагоцитов ограничена несколькими сутками. Еще раньше они погибают, образуя гной, скапливаясь в ране вокруг занозы.

 Специфический (адаптивный) иммунитет. Гуморальный иммунитет  обеспечивается В-лимфоцитами, в  которых вырабатываются антитела (гамма-глобулины), клеточный - Т-лимфоцитами. Макрофаги выступают при этом в роли посредников в процессе взаимодействия всех участников событий с помощью вырабатываемых клетками лимфо- и монокинов:

Лимфоциты, таким образом, в отличие от нейтрофилов и  моноцитов обеспечивают иммунитет, иммунную память организма: раз встретившись с веществами чужеродного генотипа, они узнают их и через десятки  лет. На этом свойстве лимфоцитов основаны методы прививок от многих заболеваний. В крови взрослого человека содержится до 1012 лимфоцитов и до 1020 молекул  иммуноглобулинов. В крови новорожденного этих белков очень мало, поэтому  иммунная защита организма осуществляется с помощью антител, поступающих  с молоком матери. В плазме крови  содержится также около 15 белков комплемента, активно участвующих в реакциях взаимодействия антител с антигенами.

 Лимфоциты образуют  антитела не только против  обычных инфекций и даже не  только против естественных, природных  антигенов. Эти удивительные клетки  также активно действуют, если  в организм попадают искусственные  белки. Долгое время оставалось  загадкой, каким образом могут  вырабатываться антитела против  соединений, с которыми организм  человека или животного никогда  не встречался. Способ, который выработался  в процессе эволюции, состоит  в следующем. Одна клетка-предшественница  образует путем серии последовательных  митозов и дифференцировок семейство  дочерних лимфоцитов, отличающихся  друг от друга структурой глобулиновых  рецепторов на поверхности и  способностью синтезировать свой  особый тип антител. Каждый  из лимфоцитов содержит примерно 105 таких рецепторов. Попадающие  в кровь или другие ткани  антигены (вирусы, микробы) по принципу  случайности встречаются со многими  лимфоцитами, но становятся раздражителями (активаторами) по отношению только  к некоторым. Для того чтобы  в лимфоците возникла ответная  реакция, структуры антигена и  рецептора должны подойти как  ключ к замку. Если такой  контакт произошел, клетка начинает  увеличиваться в размерах, делиться, в ее цитоплазме образуется  густая эндоплазматическая сеть  с рибосомами, синтезируются и  выходят из клетки антитела, способные  блокировать антигены именно  того типа, который вызвал ответную  реакцию. Такие клетки называют  плазматическими. Дочерние плазматические  клетки, ведущие родословную от  лимфоцита, получившего ангигенный стимул, составляют клон. За 5 суток из одного лимфоцита образуется до 500 дочерних плазматических клеток, на поверхности каждой из них представлены по 105 рецепторов, структурно соответствующих антигену, вызвавшему активацию. С помощью механизма глобулиновой рецепции организм оказывается в состоянии нейтрализовать 105-106 антигенов.

 Нормальная интенсивность  иммунных реакций крови может  быть изменена под влиянием  наследственных и ненаследственных  причин в сторону гиперчувствительности  (в виде аллергий на разные  вещества) или гипочувствительности вплоть до иммунодефицита. Тяжелым дефектом оказываются аутоиммунные процессы, когда некоторые собственные клетки и ткани тела начинают восприниматься лимфоцитами как чужеродные и уничтожаются. Организм начинает работать против себя. Именно в этом состоит причина таких болезней, как псориаз, ревматоидный артрит, некоторые формы диабета.                                                                                                            В современных условиях жизни людей иммунная система в большинстве случаев ослаблена из-за множества вредных для организма влияний со стороны внешней среды, действующих через пищеварительный тракт, дыхательные пути и кожу.                                                                                                                                                 Иммунологические реакции системы крови сопровождаются изменениями ее свертывания и процессов фибринолиза, которые, в свою очередь, зависят от факторов специфического и неспецифического иммунитета. При врожденном дефиците некоторых плазменных белков системы комплемента свертываемость крови снижается. Одна из причин этого состоит в уменьшении способности тромбоцитов к агрегации, что связано с присутствием на их поверхности рецепторов к иммуноглобулинам и некоторых компонентов системы комплемента, содержание последних около 10-15 г на одну клетку. У больных с повышенной внутрисосудистой свертываемостью крови уменьшено содержание белков системы комплемента.                                                   Транспортная функция крови заключается в переносе продуктов метаболизма и веществ из одних участков тела в другие. Обмен воды между кровью и окружающими тканями достигает, по некоторым расчетам, 400 л в сутки. Из организма взрослого человека выделяется за сутки около 0,2 г аминокислот, до 30 г мочевины, 1,5-2 л воды, в которой растворены соли, гормоны, витамины, ферменты. На смену им в кровь поступают новые вещества путем всасывания из пищеварительного тракта и новообразования в тканях. Клетки желудочков мозга и спинномозгового канала образуют ликвор (спинномозговую жидкость), используя поступающие из крови аминокислоты и электролиты. Из крови в лимфу переходит за сутки до 200 г белков.                                                       Часть транспортируемых кровью веществ растворена в плазме, а другая часть соединяется с белками и клетками крови. Билирубин (вещество желтого цвета, образующееся в результате разрушения гемоглобина при старении эритроцитов) соединяется с альбуминами плазмы в соотношении 5 : 1 и транспортируется к органам выделения: почкам, печени, кишечнику. Липопротеиды плазмы транспортируют холестерин - один из распространенных фосфолипидов, входящих в состав мембран. Избыточное отложение этого вещества в стенках кровеносных сосудов связывают с развитием атеросклероза.                                                                                                                            Белки плазмы переносят также ионы, токсичные в свободном состоянии (железо, медь), к органам, где они используются в процессах биосинтеза. Благодаря транспорту создается временное депонирование некоторых веществ. Так, эритроциты транспортируют инсулин, который в связанном состоянии неактивен, а также альбумин, глюкозу, аминокислоты. Один эритроцит способен присоединить до 109 молекул альбумина. Выпитый алкоголь после его всасывания из желудка и кишечника переносится к печени, легким, почкам в основном также эритроцитами, которые первоначально принимают на себя вредное действие этого вещества.                            Транспорт газов. Транспорт газов кровью представляет одну из важнейших функций крови. Газы проникают в кровь путем диффузии за счет разности парциальных давлений и переносятся кровью, как и другие вещества, в растворенном и химически связанном состоянии.

 Транспорт газов, участвующих  в процессах нормального дыхания, - кислорода (О2) и диоксида углерода (СО2) представляет дыхательную функцию крови. Важнейшая роль в этом процессе принадлежит гемоглобину, оксигенация которого (насыщение его О2) обеспечивает содержание до 20 мл О2 в 100 мл крови. Находясь в клетках, гемоглобин не влияет заметным образом на онкотическое и коллоидно-осмотическое давление крови и в то же время проявляет большую способность присоединять кислород (1 г гемоглобина способен присоединить 1,34-1,36 мл О2) и играть роль буферной системы. Общая поверхность эритроцитов около 300 м2, что в 200 раз превышает поверхность тела.                                                                                                                                                       Болезни крови, связанные с гемоглобином и эритроцитами, - это анемии различного происхождения, вызванные нарушениями кроветворения (апластические) или биосинтеза гемоглобина (гипо- и гиперхромные). Содержание в крови эритроцитов и гемоглобина возрастает в условиях высокогорья, где парциальное давление О2 в атмосферном воздухе заметно снижено. Напротив, при гипероксии (когда используется дыхание чистым кислородом) содержание физически растворенного кислорода в крови возрастает настолько, что гемоглобин перестает выполнять свою роль буферного регулятора крови, в частности участвовать в транспорте СО2 . В отличие от О2 СО2 присоединяется не к атому железа в гемоглобине, а к его полипептидным цепям, образуя с аминокислотами так называемую карбоматную связь.                                                                                                       Транспорт тепла. Около 50% энергии, образующейся в организме в процессе нормальной жизнедеятельности, выделяется в виде тепла. Из глубоко расположенных органов и тканей кровь уносит излишнее тепло к тканям, находящимся ближе к поверхности тела. Охлаждение или перегревание поверхности тела влияют на организм не только через температурные рецепторы, но и за счет крови, протекающей через сосуды кожи, подкожной клетчатки и легочных путей.                                                                                                                                                              Роль крови как теплообменника особенно заметна при перегревании тела, когда возрастают частота сердцебиений и скорость кровотока. Кровь, нагревшаяся в глубине тела до 38?С, притекая к коже и последовательно переходя в сосуды меньшего калибра, замедляет скорость потока и постепенно приобретает температуру окружающих участков кожи. Охлажденная кровь возвращается в венозное русло. Чем быстрее кровоток, тем медленнее отдается тепло и кровь переходит из артерий в вены, все еще сохраняя температуру, близкую к начальной. Расчеты показывают также, что для отведения тепла от мозга при нормальной его теплопродукции (около 12 ккал/ч) достаточен градиент температур между мозгом и притекающей к нему кровью всего в 0,27?С.


Информация о работе Функции крови