Биотехнология и ее достижения

Автор: Пользователь скрыл имя, 10 Декабря 2012 в 13:19, реферат

Описание работы

Возможности, открываемые биотехнологией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.
Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.
Генная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.

Содержание

Введение………………………………………………………………………….3
1. Понятие и сущность биотехнологии, история ее возникновения……….....4
2. Основные направления и методы биотехнологии…………………………..7
3. Практические достижения и перспективы биотехнологии……………….11
Заключение……………………………………………………………………....18
Список использованной литературы…………………………………………..19

Работа содержит 1 файл

ВКМРПК биотехнология.doc

— 83.00 Кб (Скачать)

В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности.

Под экологизацией, как начальным  этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замк¬нутым циклом и т. п.

Биологизацию же следует понимать более широко, как радикальное  преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы.

Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотиче¬ский круговорот.

Особенно наглядно эта  необходимость видна на феномене стратегической беспомощности химической защиты растений:

Дело в том, что в настоящее  время нет в мире ни одного пестицида, к которому бы не приспособились вредители  растений.

Более того, теперь отчетливо выявилась  закономерность подобного приспособления: если в 1917г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980г. таких видов стало 432.

Применяемые пестициды и гербициды  крайне вредны не только для всего  животного мира, но и для человека.

Точно так же в настоящее время  становится понятной и стратегическая бесперспективность приме¬нения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом химических удобрений.

Решавшую роль в процессе биологизации сельского хозяйства  может сыграть биотехнология.

Можно и нужно говорить о биологизации техники, промышленного производства и энергетики.

Активно развивающаяся  биоэнергетика обещает революционные  преобразования, поскольку она ориентирована  на возобновляемые источники энергии  и сырья.

 

3. Практические  достижения и перспективы   биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной  и химической промышленности.

Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов.

Особенно большие надежды  связываются с попытками использования  микроорганизмов и культур клеток для уменьшения загрязнения среды  и производства энергии.

В молекулярной биологии использование  биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.

Конструирование нужных генов методами генной и клеточной  инженерии позволяет управлять  наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и  вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др.

В биохимии, микробиологии, цитологии  несомненный интерес вызывают методы иммобилизации как ферментов, так  и целых клеток микроорганизмов, растений и животных.

В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.

Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Если говорить о перспективах развития биотехнологии, то центральной проблемой  биотехнологии остается интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК.

Конструирование нужных генов позволяет управлять наследственностью  и жизнедеятельностью животных, растений и микроорганизмов и создавать  организмы с новыми свойствами.

В частности, возможно управление процессом  фиксации атмосферного азота и перенос  соответствующих генов из клеток микроорганизмов в геном растительной клетки.

В качестве источников сырья для  биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.

Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей в формировании продовольственной базы человечества растениеводства и животноводства с одной стороны, и микробного синтеза - с другой.

Не менее важным аспектом современной  микробиологической технологии является изучения участия микроорганизмов  в биосферных процессах и направленная регуляция их жизнедеятельности  с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений.

С этой проблемой тесно связаны  исследования по выявлению роли микроорганизмов  в плодородии почв (гумусообразовании  и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и других химических соединений в почве.

Имеющиеся в этой области знания свидетельствуют о том, что изменение  стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается как с экономической, так и с экологической точек зрения.

В данном направлении перед биотехнологией может быть поставлена цель регенерации  ландшафтов.

Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду.

Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия.

Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.

Важным и перспективным  направлением биотехнологии является разработка способов получения экологически чистой энергии.

Получение биогаза и этанола  были рассмотрены выше, но есть и  принципиально новые экспериментальные подходы в этом направлении.

Одним из них является получение фотоводорода:

«Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету  происходит фотолиз воды - разложение ее на кислород и водород. Моделирование  процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе – водороде».

Преимущества такого способа получения  энергии очевидны:

• наличие избытка субстрата, воды;

• нелимитируемый источник энергии - Солнце;

• продукт (водород) можно хранить, не загрязняя атмосферу;

• водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3.5 ккал/г);

• процесс идет при нормальной температуре без образования токсических промежуточных продуктов;

• процесс циклический, так как при потреблении водорода регенерируется субстрат - вода. 

Хочется отметить биотехнология сельскохозяйственных растений. Так, начиная с каменного  века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.

По мере углубления знаний о генетике растений человек начал осуществлять целенаправленное перекрестное скрещивание (кроссбридинг) обладающих желаемыми  характеристиками или не имеющих  нежелательных признаков сортов растений и межвидовую гибридизацию с целью получения новых сортов, сохранивших лучшие качества обеих родительских линий. В настоящее время практически любая сельскохозяйственная культура является результатом кроссбридинга, гибридизации или применения обоих подходов. К сожалению, эти методы нередко дороги, требуют больших затрат времени, неэффективны и имеют существенные практические ограничения. Например, для создания с помощью традиционного кроссбридинга сорта кукурузы, устойчивого к определенным насекомым, потребовался бы не один десяток лет, причем без гарантированного результата.

Биотехнологические подходы позволяют  современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого. Этот процесс гораздо более точен и избирателен, чем традиционное скрещивание, в ходе которого тысячи генов, обладающих неизвестными функциями, перемещаются из одного сорта или вида растений в другой.

Биотехнология позволяет и то, что  не под силу природе – перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая. Например, мы можем взять бактериальный ген, токсичный для болезнетворного грибка, и встроить его в геном растения. Растение при этом начинает синтезировать фунгицидный белок и в борьбе с грибком не нуждается в помощи извне.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Широкое использование микроорганизмов  не может не порождать новых взаимоотношений  с живой природой, что вполне естественно ведет к желанию осмыслить сами эти взаимоотношения и соотнести их со сложившимися представлениями, с одной стороны, о роли живой природы в жизнедеятельности человека, а с другой - о роли человека в биотическом круговороте биосферы.

Имеющийся пока не слишком богатый опыт развития биотехнологии все-таки содержит в себе много непривычного и вместе с тем многообещающего для возможной оптимизации человеческой жизнедеятельности.

А остро вставшая перед Homo sapiens проблема самосохранения вынуждает его к лихорадочным поискам возможных вариантов стратегии своей жизнедеятельности. Этому привлечению природы, причем именно мира микроорганизмов, и положила начало новая биотехнология.

Можно, видимо, сказать, что биотехнология  в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

«Явившись прямым результатом научных  разработок, биотехнология оказывается  непосредственным единением науки  и производства, еще одной ступенькой к единству познания и действования, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности».

И все-таки она является только небольшим  шагом. Поскольку, как заметил Б. Шоу, наука всегда ошибается. Она никогда не разрешает какой-то проблемы, не создав еще десять новых.

Биотехнология сама оказывается всего  лишь крупной индустрией, соединением  технических и биологических  элементов и, естественно, наследует  отрицательные свойства уже существующего индустриально-промышленного комплекса.

Их действительное преодоление  и решение проблемы человека предполагают выход человечества на новые, более  совершенные ступени социально-культурного  развития, основанного на новых способах познания и действования.

Поэтому весьма существенное значение приобретает проблема выбора стратегии  взаимодействия человека и природы: или это самонадеянное управление природой или же сознательное и целенаправленное приспособление всей жизнедеятельной  деятельности, к существующему биотическому круговороту биосферы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Информация о работе Биотехнология и ее достижения