Биохимия крови

Автор: Пользователь скрыл имя, 19 Октября 2011 в 09:18, реферат

Описание работы

Кровь — соединительная ткань, наполняющая сердечнососудистую систему позвоночных животных и некоторых беспозвоночных. Кровь отличается от других тканей своим агрегатным состоянием – она жидкая, и как жидкая ткань обеспечивает постоянство внутренней среды организма. Масса крови у различных животных составляет от 6,2 до 8% массы тела, причём у молодых животных относительный объём крови несколько больше. У всех позвоночных кровь имеет чаще красный цвет (от бледно-красного до тёмно-красного), которым она обязана гемоглобину, содержащемуся в эритроцитах.

Работа содержит 1 файл

Реферат Биохимия крови.docx

— 41.19 Кб (Скачать)

 Креатинфосфокиназа (КФК), важную роль играет в энергетическом обмене. Креатинфосфокиназа необходима для ресинтеза АТФ за счет трансфосфорилирования АдФ с креатинфосфатом. Креатинфосфат относится к богатым энергией фосфатным соединениям, которые обеспечивают сокращение мышечного волокна, его расслабление, транспорт метаболитов в мышечную ткань.

 Креатин-Ф + АдФ КФК > Креатин + АТФ.

 Креатинфосфокиназа состоит из двух субъединиц — М и В, образующих три изофермента: ММ (мышечный тип), МВ (сердечный тип), ВВ (мозговой тип).

 Анализ тканей  свидетельствует, что значительная  активность КФК имеет место  в скелетной мышце, миокарде, мозге.  Сердечная мышца содержит в основном изофермент ММ и МВ. Повышение активности изофермента МВ в сыворотке крови пациента свидетельствует о поражении сердечной мышцы. Определение изоферментов КФК является лучшим методом диагностики при наследственной мышечной дистрофии у цыплят, при недостатке селена у крупного рогатого скота, при паралитической миоглобинурии у лошадей.

 Щелочная фосфатаза  (ЩФ), КФ 3.1.3.1 — гидролитический фермент,  синтезируемый в основном в  печени

 выделяется из  организма в составе желчи.  Его оптимум активности находится  при рН = 8—9. Это неспецифический фермент, катализирующий гидролиз многих фосфорных эфиров и присутствующий в плазме в форме изоферментов. Основной источник щелочной фосфатазы у молодых растущих животных — костная ткань. Активность щелочной фосфатазы значительно повышается при болезнях печени и костей, в частности, при остеомаляциях. Основная роль щелочной фосфатазы, вероятно, связана с отложением фосфатов кальция в костной ткани. Установлено повышение активности щелочной фосфатазы сыворотки крови при новообразованиях кости.

 Холинэстераза — фермент, участвующий в процессе передачи нервного импульса, гидролизу ацетилхолин на ацетат и холин. Холинэстераза сыворотки крови включает два вида холинэстераз организма, основной субстрат которых — ацетилхолин. Ацетилхолинэстераза (АХЭ), гидролизирующая ацетилхолин в синапеах, называется истинной (КФ 3.1.1.7). Она присутствует в печени, эритроцитах и лишь малое ее количество локализовано в плазме. Холинэстераза плазмы крови является псевдохолинэстеразой (КФ 3.1.1.8), она гидролизует бутирилхолин в 4 раза быстрее, чем ацетилхолин. Этот фермент находится также в печени, поджелудочной железе, слизистой оболочке кишечника. Синтез АХЭ сыворотки крови происходит в печени, а поэтому при патологии этого органа наблюдается снижение активности фермента.

 Необратимыми  ингибиторами АХЭ являются токсические  фосфорорганические соединения (ФОС). Так, ФОСинсектициды (хлорофос, фоефамид, карбофос, октаметил) избирательно связывают активные центры молекулы АХЭ и тем самым блокируют ее активность. Вследствие высокой липотропности ФОС способны проникать в организм животного через неповрежденную кожу и слизистые оболочки. При отравлении ФОС отмечают беспокойство животного, чувство страха, возбуждение, судороги, которые развиваются на фоне приступов удушья и кашля из-за спазма бронхов. Характерными при этом являются изменения со стороны глаз: резко суживается зрачок, начинается слезотечение, нарушается аккомодация. Чаще всего непосредственной причиной гибели животного, отравленного ФОС является паралич дыхательного центра.

 Амилаза (КФ 3.2.1.1) продуцируется слюнными железами  и в больших количествах поджелудочной  железой.

 Амилаза обладает  специфическим действием на с-1 ,4-глюкозидные связи полисахаридов. Повышение активности амилазы сыворотки крови свидетельствует о развитии острого панкреатита. Умеренное повышение активности фермента отмечается при воспалении слюнных желез.

 Азотсодержащие  и безазотистые вещества плазмы крови.

 Наряду с белками  плазма (сыворотка) крови содержит  различные азотсодержащие небелковые  вещества, которые получили название  остаточного азота. В состав  остаточного азота входит азот  мочевины, мочевой кислоты, аминокислотьи, мелкие пептиды, билирубин, креатин, креатинин, аллантоин, глутамин, серотонин, гистамин, адреналин и некоторые другие. При действии 20- или 40% -ми растворами трихлоруксусной кислоты на эти вещества они не осаждаются и остаются в растворенном состоянии. Основным компонентом остаточного азота у млекопитающих является мочевина, у птиц количественно преобладает мочевая кислота. В целях диагностики используют определение, как суммарного количества остаточного азота, так и веществ его составляющих. Уровень суммарного количества остаточного азота в плазме крови лошади составляет 25—35 мг%, крупного рогатого скота — 40—60 мг%, свиньи — 35—60 мг%, собаки — 35—40 мг%. Мочевина в норме составляет до 70% от общего остаточного азота плазмы крови млекопитающих. Пониженный уровень мочевины в плазме крови указывает на нарушение функции печени, тогда как увеличение этого показателя свидетельствует о нарушении функции почек животного. Мочевая кислота в плазме крови птиц достигает в норме 9 мг% и является конечным продуктом белкового обмена.

 Общее количество  остаточного азота плазмы крови  и его отдельных компонентов  может при определенных болезнях  животного меняться и в первую  очередь при нарушениях выделительной  функции почек, когда особенно  резко увеличивается содержание  мочевины. Это состояние носит  название уремии. Содержание мочевой  кислоты в плазме крови часто  повышено при подагре, лейкемии, пневмонии. У взрослых животных  повышение концентрации общего  азота в плазме крови свидетельствует  об усилении распада белков  тканей. Повышение уровня общего  остаточного азота в плазме  крови наблюдается и при высоком  содержании белков в рационе.

 Среди свободных  аминокислот плазмы крови животного  преобладают аланин, глицин, лейцин, аспарагиновая кислота, глутаминовая кислота, а также глутамин. Уровень аминокислот в плазме млекопитающих составляет 10—30 мг%. Эти аминокислоты могут быть использованы организмом на синтетические цели.

 Креатин играет  важную роль в метаболизме  энергии. Это продукт обмена  глицина, аргинина, -аденозилметионина. Креатинфосфат внутри клеток спонтанно распадается с образованием креатинина, поступающего в циркуляцию крови.

 Количество креатинина, поступающего из крови в мочу, в норме является величиной постоянной (15 мг/кг мышечной ткани). Так как уровень креатинфосфата в целом пропорционален мышечной массе организма, то у расту- щих животных уровень креатина в плазме крови всегда выше, чем уровень креатинина.

 Билирубин является  конечным продуктом распада гемоглобина.  Определение количества билирубина  плазмы крови используется для  оценки функции печени или  интенсивности гемолитических процессов  в организме. В обоих случаях  концентрация билирубина плазмы  крови повышается (норма до 1 мг%). Концентрация билирубина может быть повышена в плазме крови животного при поражении печени и, в частности, за счет его прямой фракции, образующейся в печеночных клетках и выходящей из них вследствие повышения проницаемости клеточных мембран при патологических состояниях. При гемолитических процессах, например, в случаях гемоспоридиозов крупного рогатого скота, происходит повышение концентрации общего билирубина плазмы без повышения уровня фракции прямого билирубина.

 Безазотистые вещества плазмы крови включают метаболиты углеводного, жирового и минерального обменов. Среди них, прежде всего, следует назвать глюкозу. В зависимости от типа кормления животного концентрация глюкозы в крови обычно варьирует в пределах физиологической нормы. Норма концентрации глюкозы крови является результатом баланса функций регулирующих ее гормонов. Следует помнить, что глюкоза - нестойкое органическое соединение организма: спустя сутки после получения пробы крови (плазмы) концентрация в ней глюкозы падает на 30—40%, что необходимо учитывать в диагностической работе. Концентрация глюкозы в крови жвачных животных составляет 50—60 мг%, у животных с однокамерным желудком —- 70—110 мг%. В крови животных всегда присутствуют основные метаболиты глюкозы — пировиноградная и молочная кислоты.

 При <углеводном  рационе в крови животного  значительно возрастает концентрация  глюкозы, которая под влиянием глюкокиназы печени (или гексокиназы) приводит к повышению уровня глюкозо-6-фосфата. Таким образом, роль глюкокиназы заключается в обеспечении глюкозо-б-фосфата для синтеза гликогена. Уровень глюкозо-б-фосфата контролируется глюкагоном и инсулином. Глюкагон начинает каскад реакций с участием цАМФ, приводящих к распаду гликогена, тогда как инсулин имеет обратный эффект. Высокий уровень глюкозы в крови приводит к снижению синтеза глюкагона и повышению уровня инсулина поджелудочной железой. Это гормональное соотношение является прямым аллостерическим действием самой глюкозы. Снижение использования глюкозы мышцами и жировой тканью способствует поддержанию уровня глюкозы в крови. Поступление глюкозы в мышцы и жировую ткань снижается при низком уровне инсулина в крови.

 Временная глюкозурия в течение 1—1,5 часа может быть у собаки после обильной углеводной еды, однако выраженная глюкозурия в течение 2 часов и более является прямым свидетельством сахарного диабета. При кетозах высокопродуктивных молочных коров и токсемии беременности у овцематок наблюдают состояние гипогликемии.

 Большие количества  трудно переваримых углеводов (клетчатка) у жвачных животных ферментируются в летучие жирные кислоты (уксусная — 65%, пропионовая 20%, масляная — 10%) микрофлорой рубца. Меньшие количества переваримых углеводов (крахмал, глюкоза) кормов избегают подобной ферментации. Уксусная кислота используется для энергетических потребностей организма, а также на синтетические цели. В то же время протпионовая кислота является хорошо известным предшественником глюкозы в процессе глюконеогенеза. Теоретически 1 г пропионовой кислоты может дать 1,23 г глюкозы. Масляная кислота стимулирует продукцию глюкозы, усиливая фосфоролиз в печени за счет повышении скорости глюконеогенеза. Возможным источником глюкозы у жвачных животных служит и молочная кислота, продукт ряда ферментативных реакций организма. Содержание общих липидов в крови составляет 500—900 мг%. Среди них — триглицериды, фосфолипиды, свободные жирные кислоты, холин, холестерин, глицерин, кетоновые тела. Важное диагностическое значение имеет определение в крови концентрации кетоновых тел (ацетон, ацетоуксусная и оксимасляная кислоты). В норме их содержание в крови не превышает 10 мг%. Повышенная концентрация кетоновых тел в крови наблюдается при кетозах, при голодании животного, в случаях сахарного диабета.

 Из минеральных  веществ крови следует в первую очередь отметить важную роль постоянства концентрации кальция и неорганического фосфора. Концентрация кальция в плазме крови млекопитающих животных равна 10—12 МГ%, у птиц 10—25 мг%. Концентрация неорганического фосфора в плазме крови составляет 4—б мг%, В норме соотношение в плазме крови млекопитающих животных кальция и фосфора составляет 2 : 1, у птиц 3: 1. Уровень кальция и фосфора плазмы крови регулируется за счет производных витамина Ц кальцитонина и паратгормона. При недостатке производных витамина 13 в организме накапливаются пируват и лактат и снижается синтез лимонной кислоты. Поэтому определение уровня пировиноградной и лимонной кислот в крови является косвенным показателем обеспеченности животного производными витамина В. Концентрация кальция в плазме крови обычно снижена при рахите и остеомаляции, когда нарушается структура костной ткани. Снижение концентрации неорганического фосфора в плазме крови характерно для рахита, а повышение этого показателя отмечают при гипервитаминозе

3. Сводные биохимические  показатели метаболизма собак  и кошек

 Показатели углеводного  обмена

 Клиническое значение.

 Повышенное содержание  глюкозы в крови (гипергликемия), особенно при повторных исследованиях,  чаще всего указывает на наличие  сахарного диабета. По данным американских авторов (1.1. Kaneko, 1980), это заболевание у кошек и собак встречается чаще, чем у других животных (1:152 у собак и 1:800 у кошек). На частоту заболевания оказывает влияние возраст и пол животных. У сук и котов оно встречается чаще. У собак заболевание сахарным диабетом наблюдается наиболее часто в возрасте 4-14 лет (в среднем 7-9 лет), а у кошек - старше 6 лет. При сахарном диабете нарушается поступление глюкозы в клетки, что и приводит к гипергликемии. Причиной этого является или недостаточная способность поджелудочной железы выделять инсулин в кровь, или же неспособность инсулина связываться с соответствующим рецептором и оказывать свое биологическое действие. Гипергликемия у собак достигает 5-7 г/л при норме 0,8-1,4 г/л. Такая гипергликемия сопровождается выделением глюкозы с мочой (глюкозурия). У кошек уровень глюкозы в крови обычно превышает при диабете 2 г/л.

 По данным французских  авторов (1994), наряду с определением  содержания глюкозы в крови  перспективным в плане диагностики  сахарного диабета является проведение  сахарной нагрузки с последующим  определением уровня инсулина. У  здоровых собак добавочный выброс  инсулина в ответ на поступление  глюкозы занимает менее 30 мин., в то время как при диабете  гиперинсулинемия более выражена и длится дольше. Гипергликемия отмечена также при лечении глюкокортикоидами, лихорадке, возбуждении животных.

 Гипогликемия  наблюдается при заболеваниях  печени, при гликогенной болезни, когда клетки печени теряют способность расщеплять гликоген с высвобождением глюкозы. Низкий уровень глюкозы в крови отмечен при гипоадренокортицизме, когда снижен синтез глюкокортикоидов корой надпочечников, а также при опухолях островковых клеток поджелудочной железы, вырабатывающих инсулин, при передозировке противодиабетических препаратов, голодании, при поражении почек, когда глюкоза выводится с мочой. Гипогликемия может быть и ложной, вследствие погрешностей при выполнении лабораторных исследований. Эритроциты крови интенсивно потребляют глюкозу с образованием молочной кислоты. Поэтому, если определение глюкозы проводится в цельной крови, необходимо предварительно осаждать белки.

Информация о работе Биохимия крови