Автор: Пользователь скрыл имя, 20 Февраля 2012 в 18:00, контрольная работа
Проблема утомления в биохимии спорта – одна из трудных и еще далеких от решения.В наиболее общей форме утомление можно определить как состояние организма, возникающее вследствие длительной или напряженной деятельности и характеризуется снижение работоспособности. Субъективно оно воспринимается человеком как чувство местной усталости или общей усталости.
Биохимические процессы в период отдыха после мышечной работы
Проблема утомления в биохимии спорта – одна из трудных и еще далеких от решения.В наиболее общей форме утомление можно определить как состояние организма, возникающее вследствие длительной или напряженной деятельности и характеризуется снижение работоспособности. Субъективно оно воспринимается человеком как чувство местной усталости или общей усталости.
Многолетние исследования [30,87]
позволяют разделить
Во-вторых, это биохимические изменения в скелетных мышцах и миокарде, вызванные их работой и трофическими изменениями в нервной системе. В-третьих, это биохимические изменения во внутренней среде организма, зависящие как от процессов, происходящих в мышцах, так и от влияния нервной системы [30,105].
Общими чертами утомления являются нарушение баланса фосфатных макроэргов в мышцах и головном мозгу, а так же снижение активности АТФ-азы и коэффициента фосфорилирования в мышцах. Однако утомление, связанное с работой высокой интенсивности и большой длительности, имеет и некоторые специфические черты.
Кроме того, биохимические изменения при утомлении, вызванном кратковременной мышечной деятельностью, характеризуется значительно большим градиентом, чем при мышечной деятельности умеренной интенсивности, но по длительности близкой к пределу.
Следует подчеркнуть, что резкое снижение углеводных запасов организма хотя и имеет большое значение, но не играет решающей роли в ограничении работоспособности [31,15]. Важнейшим фактором, лимитирующим работоспособность, является уровень АТФ как в самих мышцах, так и в центральной нервной системе. При этом нельзя не учитывать и биохимические изменения в других органах, в частности, в миокарде. При интенсивной кратковременной работе уровень гликогена и креатинфосфата в нем не изменяется, а активность окислительных ферментов возрастает. При работе же большой длительности может иметь место снижение как уровень гликогена и креатинфосфата, так и энзиматической активности. Это сопровождается изменениями ЭКГ, свидетельствующими о дистрофических процессах, чаще всего в левом желудочке и реже в предсердиях [7,64].
Таким образом, утомление
характеризуется глубокими
О центрально-нервной природе утомления еще а 1903 году писал И.М. Сеченов [24,5]. С этого времени данные о роли центрального торможения в механизме утомления все пополняются. Наличие разлитого торможения при утомлении, вызванном длительной мышечной деятельностью, не подлежат сомнению. Оно развивается в центральной нервной системе и развивается в ней при взаимодействии центра и периферии при ведущей роли первого.
Утомление – это следствие изменений, вызванных в организме интенсивной или длительной активностью, и защитная реакция, препятствующая переходу через грань функциональных и биохимических нарушений, опасных для организма, угрожающих его существованию.[30,109]
В механизме утомления известную роль играют так же нарушения белкового и нуклеинового обмена нервной системы. При длительном беге или плавании с грузом, вызывающих значительное утомление, в двигательных нейронах наблюдается снижение уровня РНК, тогда как при длительной, но не утомительной работе он не изменяется или повышается. [30,113]. Поскольку химизм и, в частности, активность ферментов мышц регулируются трофическими влияниями нервной системы, можно полагать, что изменения химического статуса нервных клеток при развитии охранительного торможения, вызванного утомлением, приводят к изменению трофической центробежной импульсации, влекущей за собой нарушения в регуляции химизма мышц.
Это трофические влияния, видимо, осуществляются путем движения биологически активных веществ по аксоплазме эфферентных волокон, описанного П. Вейссом. В частности, из периферических нервов было выделено белковое вещество, являющееся специфическим ингибитором гексокиназы, сходное с ингибитором этого фермента, выделяемым передней долей гипофиза.
Таким образом, утомление
развивается при взаимодействии
центральных и периферических механизмов
при ведущем и интегрирующем
значении первых. Оно связано как
с изменениями в нервных
Биохимические изменения при утомлении могут носить генерализованный характер, сопровождаться общими изменениями внутренней среды организма и нарушениями регуляции и координации различных физиологических функций (при длительной физической нагрузках, захватывающих значительные мышечные массы).[30,114].
Эти изменения могут носить
и более локальный характер, не
сопровождающиеся значительными общими
изменениями, а ограничивающиеся лишь
работающими мышцами и
Утомление (и в особенности
чувство усталости) является защитной
реакцией, предохраняющей организм от
чрезмерных степеней функционального
истощения, опасных для жизни. Вместе
с тем оно тренирует
Во время отдыха после мышечной работы происходит восстановление нормальных (дорабочих) соотношений биологических соединений как в мышцах, так и в организма в целом. Если во время мышечной работы доминируют катаболические процессы, необходимые для энергообеспечния, то во время отдыха преобладают процессы анаболизма.
Анаболические процессы нуждаются в затратах энергии в форме АТФ, поэтому наиболее выраженные изменения обнаруживаются в сфере энергетического обмена, так как в период отдыха АТФ постоянно тратиться, и, следовательно, запасы АТФ должны восстанавливаться. Анаболические процессы в период отдыха обусловлены катаболическими процессами, которые совершались во время работы.
Во время отдыха ресинтизируются АТФ, креатинфосфат, гликоген, фосфолипиды, мышечные белки, приходит в норму водно-электролитный баланс организма, происходит восстановление разрушенных клеточных структур. В зависимости от общей направленности биохимических сдвигов в организме и времени, необходимого для сепаративных процессов, выделяют два типа восстановительных процессов – срочное и оставленное восстановление.
Срочное восстановление длиться от 30 до 90 минут после работы. В период срочного восстановления происходит устранение накопившихся за время работы продуктов анаэробного распада, прежде всего молочной кислоты и кислородного долга.
После окончания работы потребление
кислорода продолжает оставаться повышенным
по сравнению с состоянием покоя.
Этот излишек кислородного потребления
и получил название кислородного
долга. Кислородный долг всегда больше
кислородного дефицита, и чем выше
интенсивность и
Во время отдыха расходование АТФ на мышечные сокращения прекращается и содержание АТФ в митохондриях в первые же секунды возрастает, что говорит о переходе митохондрий в активное состояние. Концентрация АТФ увеличивается, повышает дорабочий уровень. Возрастает и активность окислительных ферментов. А вот активность гликогенфосфорилазы резко снижается.
Молочная кислота, как мы уже знаем, является конечным продуктом распада глюкозы в анаэробных условиях. В начальный момент отдыха, когда сохраняется повышенное потребление кислорода, снабжение кислородом окислительных систем мышц возрастает.
Кроме молочной кислоты окислению подвергаются и другие накопившиеся во время работы метаболиты: янтарная кислота, глюкоза; а на более поздних этапах восстановления и жирные кислоты. Отставленное восстановление длится долгое время после окончания работы. Прежде всего, оно затрагивает процессы синтеза израсходованных во время мышечной работы структур, а так же восстановления ионного и гормонального равновесия в организме.
В период оставленного восстановления происходит накопление запасов гликогена в мышцах и печени; эти восстановительные процессы происходят в течение 12-48 часов. Попавшая в кровь молочная кислота поступает в клетки печени, где происходит сначала синтез глюкозы, а глюкоза является непосредственным строительным материалом для гликогенсинтетазы, катализирующей синтез гликогена.
Процесс резинтеза гликогена носит фазный характер, в основе которого лежит явление суперкомпенсации. Суперкомпенсация (свервосстановление) – это превышение запасов энергетических веществ в период отдыха их дорабочего уровня.
Суперкомпенсация – явление проходимое. Снизившееся после работы содержание гликогена во время отдыха возрастает не только до исходного, но и до более высокого уровня. Затем происходит снижение до начального (дорабочего) уровня и даже немного ниже , а далее следует волнообразное возвращение к исходному уровню.
Длительность фазы суперкомпенсации зависит от продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме. Мощная кратковременная работа вызывает быстрое наступление и быстрое завершение фазы суперкомпенсации: при восстановлении внутримышечных запасов гликогена фаза суперкомпенсации обнаруживается через 3-4 часа, а завершается через 12 часов. После длительной работы умеренной мощности суперкомпенсация гликогена наступает через 12 часов и заканчивается в период от 48 до 72 часов после окончания работы.
Закон суперкомпенсации справедлив для всех биологических соединений и структур, которые в той или иной мере расходуются или нарушаются при мышечной деятельности и ресинтезируются во время отдыха. К ним относятся: креатинфосфат, структурные и ферментные белки, фосфолипиды, клеточные оргонеллы (митохондрии, лизосомы).
После ресинтеза энергетических запасов организма значительно усиливаются процессы ресинтеза фосфолипидов и белков, особенно после тяжелой силовой работы, которая сопровождается значительным их распадом. Восстановление уровня структурных и ферментных белков происходит в течение 12-72 часов.
При выполнении работы, связанной с потерей воды, в восстановительный период следует заполнить запасы воды и минеральных солей. Основным источником минеральных солей служат продукты питания. [20, 113-117]
Список использованной литературы
1. Адаптация и физическая
работоспособность спортсменов:
2. Белоусов П.П. Сауна или русская баня «Суховей»? – М.: «Прометей», 1991. - С. 171.
3. Биохимические пути
повышения эффективности
4. Бирюков А.А, Кафаров К.А. Средства восстановления работоспособности спортсмена. - М.: Физкультура и спорт, 1979.-С.152.
5. Буланов Ю.Б. Анаболизм без лекарств 2. - Тверь, 2003. – С. 168.
6. Васильев В.Н. Утомление
и восстановление сил.-М.:
7. Волкенштейн М.В. Молекулы и жизнь.М., «Наука», 1965.-С.100.
8. Воробьев А.Н. Тренировка,
работоспособность,
9. Восстановительные процессы
после тренировочных и
10. Дубровский В.И. Реабилитация в спорте. - М., Физкультура и спорт, 1991, - С. 208.
11. Зима А.Г., Иванов А.С.,
Макогонов А.Н. Использование
среднегорья в спорте для
12. Зотов В.П. Восстановление
работоспособности в спорте.-
13. Исследование современных
средств восстановления в
14. Малышева И.Н., Минх А.А. Основы общей и спортивной гигиены. – М.: Физкультура и спорт, 1972. – С. 375.
15. Мищенко В.С. Функциональные возможности спортсменов.-Киев "Здоровья", 1990.-С.200.
16. Назаров В.Т. Биомеханическая стимуляция: явь и надежды.-Минск.:Полымя, 1986.-С.95.
17. Нормы и способы коррекции питания спортсменов циклических видов спорта на основных этапах подготовки: Методические рекомендации.-Ленинград, 1988.-С.16.
18. Основные принципы питания
спортсменов: Методические
19. Планирование и
20. Проскурина И.К. Биохимия: Учебное пособие для студентов высших учебных заведений .-М., ВЛАДОС – ПРЕСС, 2003.-С.240.
Информация о работе Биохимические процессы в период отдыха после мышечной работы