Автор: Пользователь скрыл имя, 10 Марта 2013 в 19:34, реферат
Радиогалактики- галактики, являющиеся источниками мощного эл.-магн. излученияв радиодиапазонею Термин "Р." возник в результате отождествления в 50-х гг. 20 в. ряда мощных источников космич. радиоизлучения с относительно слабыми источниками оптич. излучения - далекими галактиками. Выделение Р. как особого класса галактик в известной степени условно, поскольку в настоящее время установлено, что практически все галактики излучают в радиодиапазоне (правда, с большим различием в мощности - от 1037 до 1044 эрг/с).
Радиогалактики
Радиогалактики- галактики, являющиеся источниками мощного эл.-магн. излученияв радиодиапазонею Термин "Р." возник в результате отождествления в 50-х гг. 20 в. ряда мощных источников космич. радиоизлучения с относительно слабыми источниками оптич. излучения - далекими галактиками. Выделение Р. как особого класса галактик в известной степени условно, поскольку в настоящее время установлено, что практически все галактики излучают в радиодиапазоне (правда, с большим различием в мощности - от 1037 до 1044 эрг/с).
С другой стороны, есть все основания полагать, что квазары, являющиеся наиболее мощными радиоисточниками (1043 - 1045 эрг/с), по-видимому, также представляют собой далекие звездные системы - галактики (см. Ядра галактик и Квазары). Т.о., собственно к Р. можно отнести радиоисточники с мощностью радиоизлучения в диапазоне 1042 - 1044 эрг/с, что характерно для массивных (1012 - 1013 масс Солнца) гигантских эллиптич. галактик (типа E, см. классификацию морфологич. типов галактик в статье Галактики). По особенностям структуры, выявленным на основе наблюдений в оптич. лучах, Р. делят дополнитеотно на неск. типов. Наиболее мощными радиоисточниками явл. т.н. D-галактики - E-галактики с протяженными оптическими оболочками (коронами).
Существуют Р. промежуточных типов: Р. типа DE занимают промежуточное положение между D- и читсым E-типами; Р. типа DB обладают св-вами D-галактик, н оотличаются еще тем, что их центральные области выглядят раздвоенными. Это раздвоение в ряде случаев связано с проецированием на центраную область галактики мощного газо-пылевого диска. Наконец, сравнительно редкую группу Р. образуют т.н. N-галактики с ярким звездообразным ядром, обнаруживающим переменность блеска. В скоплениях галактик самые мощные радиоисточники всегда отождествляются с их ярчайшими и массивнейшими членами - с т.н. cD-галактиками.
Эллиптич. E-галактики, как правило, довольно бедны межзвездным газом. Однако в оптич. спектрах ядер Р. всегда присутствуют интенсивные эмиссионные линии различных хим. элементов межзвездной среды. По-видимому, наличие не связанного в звезды газа в ядрах и околоядерных областях E-галактик играет важную роль в энерговыделении, приводящем к образованию Р. Ширины эмиссионных линий (водорода, углерода и др. химических элементов) свидетельствуют о больших скоростях внутренних движений газа в ядрах - от 300-600 км/с до нескольких тыс. и даже десятков тыс. км/с.
По характерным для Р. структурным и спектр. св-вам с Р. отождествлено уже более 2 тыс. источников космич. радиоизлучения. У радиоизлучения Р. в диапазоне частот от 10 МГц до 10-80 ГГц наблюдается, как правило, степенная зависимость спектр. плотности потока излучения от частоты - спектральный индекс; см. примеры спектров на рис. 1). Радиоизлучение имеет, несомненно, синхротронную природу - излучают релятивистские электроны, движущиеся в магн. полях Р. (см. Синхротронное излучение). Важным свидетельством в пользу этого заключения служит наблюдаемая линейная поляризация радиоизлучения (в среднем 8-10%). Степень линейной поляризации возрастает до 40-60% для отдельных компактных деталей структуры Р., что близко к предельно возможной степени поляризации (ок. 70%) синхротронного излучения и свидетельствует об определенной (в масштабах до десятков кпк) упорядоченности их магн. полей. По оценкам, напряженность магн. поля Р. составляет 10-4 - 10-6 Э в протяженных радиоструктурах и 10-2 - 10-4 Э в компактных околоядерных образованиях.
Открытие далеких радиоисточников
Философы и историки любят выделять в каждой отрасли науки золотые моменты, когда особенно значительный поворот событий открывает совершенно новые перспективы. Таким событием в радиоастрономии было открытие в начале 1950-х годов радиогалактик, так как оно превратило увлекательную боковую ветвь астрономии в дисциплину огромной важности. Уже более 20 лет радиогалактики озадачивают теоретиков, потому что в этих объектах значительная доля массы превращена в экзотическую форму вещества, называемую релятивистской плазмой. Они очаровали также космологов, потому что благодаря огромной испускаемой энергии их радиоизлучение можно обнаружить, даже если они недоступны оптическим телескопам. Это позволяет изучать свойства очень далеких галактик, то есть ранние стадии эволюции Вселенной, и исследовать структуру Вселенной в удаленных областях.
Гигантские радиогалактики
Радиоисточником является практически каждая галактика. Основной поток радиоволн порождается энергичными электронами, которые движутся в слабых магнитных полях межзвёздного пространства. Свой вклад в радиоизлучение вносят и остатки сверхновых звезд, и газовые туманности, нагретые молодыми звездами. Но в целом галактики — довольно слабые «радиостанции». Нормальная галактика излучает в радиодиапазоне на несколько порядков меньше энергии, чем в оптической или инфракрасной области спектра. Однако встречаются поразительные исключения — галактики, мощность радиоизлучения которых в тысячи и десятки тысяч раз выше, чем у нашей Галактики или сходных с ней систем. Поэтому они получили название радиогалактик.
На расстоянии около 16 млн световых лет от нас, в созвездии Центавра, находится эллиптическая галактика, имеющая обозначение NGC 5128. Это самая близкая к нам галактика с мощным радиоизлучением. С ней связан один из наиболее ярких радиоисточников на небе — Центавр А. Галактика NGC 5128 была хорошо известна и до открытия этого радиоисточника. Обычно в эллиптических галактиках мало пыли и газа, а вот NGC 5128 как бы рассечена на две части широкой темной полосой пыли и содержит многочисленные газовые облака. Астрономы считают, что в далеком прошлом здесь могло произойти столкновение гигантской эллиптической галактики с другой звездной системой, содержавшей большое количество межзвёздного газа. Вероятнее всего, эллиптическая галактика разрушила спиральную. Обогащение эллиптической галактики газом, принесенным спиральной галактикой, и обеспечивает функционирование радиогалактики Центавр А.
На радиоизображениях Центавр А предстает в виде центрального источника (он совпадает с ярким облаком в самом центре галактики на оптической фотографии) и двух огромных радиовыбросов, выходящих далеко за пределы оптического изображения. Виден также тонкий мост, связывающий ядро и радиовыбросы.
Что же там происходит?
Большинство радиогалактик имеет двойную структуру и компактный источник в центре. Напрашивается объяснение, что центральная галактика посредством какого-то механизма выбрасывает два противоположно направленных потока релятивистских заряженных частиц и они двигаясь в магнитном поле, генерируют синхротронное радиоизлучение. Откуда же испускаются направленные потоки релятивистских частиц, и что является источником их энергии? В пульсарах, например, источником энергии служит вращение магнитной нейтронной звезды. Предполагается, что в радиогалактиках энергию генерирует так называемая чёрная дыра — массивный и весьма компактный объект, образовавшийся в центре гигантской галактики. Для нескольких галактик получены косвенные свидетельства существования чёрных дыр: очень быстрое вращение газа в самом центре галактики, которое требует присутствия компактного массивного тела, не излучающего света.
Межзвёздный газ, находящийся около такой вращающейся чёрной дыры, будет, падая на нее, вовлекаться во вращение. Взаимодействие между частицами газа — вязкое трение — приведет к образованию плотного газового диска. По мере приближения к чёрной дыре газ должен нагреваться до миллиардов градусов.
Падающий газ несет в себе магнитное поле, которое становится очень сильным вблизи чёрной дыры. Его взаимодействие с горячим, быстро движущимся газом в мощном гравитационном поле чёрной дыры приводит к сложным плазменным эффектам, сопровождающимся ускорением заряженных частиц (протонов, электронов) и их выбросом из ядра, а затем и из галактики в форме двух узконаправленных потоков. Возникающее при этом синхротронное излучение электронов и превращает галактику с активным ядром в радиогалактику.
Процесс выброса ускоренных частиц может продолжаться десятки миллионов лет, пока не иссякнут запас газа, способного «упасть» в самый центр галактики. Возникает вопрос: откуда берётся газ для питания чёрной дыры? Является ли он остатками звёзд, подошедших слишком близко к ней и разорванных её гравитационным полем, или газ «упал» на галактику извне? Возможны оба варианта. По-видимому, ядро становится активным, когда эллиптическая галактика, содержащая массивную чёрную дыру и очень мало газа, сталкивается со спиральной, несущей в себе много межзвёздного газа. При слиянии двух галактик в одну систему газ должен образовать вращающийся диск (наподобие наблюдаемого в NGC 5128), причем часть газа, имеющая незначительные скорости вращения, может попасть в самое ядро галактики, стимулируя его активность.
Оптические свойства радиогалактик
Сильные радиогалактики, типичным представителем
которых часто считают Лебедь А, как правило,
характеризуются необычными свойствами,
которые астрономы связывают с резкими
возмущениями того или иного рода. В спектрах
большинства радиогалактик видны яркие
эмиссионные линии высоковозбуждённого
газа, такого, как ионизованный кислород
или азот. В некоторых случаях оптическое
ядро либо двойное, либо пересечено непрозрачной
полосой пыли: по-видимому, это справедливо
и для галактик, отождествлённых с Центавром
А и Лебедем А. Другие объекты имеют необычные
хвосты и струи газа; здесь мы можем снова
вспомнить пекулярные галактики: M 82 совпадающую
с радиоисточником ЗС 231, и М 87, отождествлённую
с ЗС 274. Ядро Лебедя А, по-видимому, плотнее,
горячее, больше и энергичнее, чем ядро
любой сейфертовской галактики.
Для классификации радиогалактик необходимо
расширить классическую схему, предложенную
Хабблом. Радиогалактики относят к следующим
добавочным типам:
1. Тип D — эллиптические галактики, окружённые
протяжёнными оболочками.
2. Тип DE — промежуточный между типами
D и Е.
3. Тип DB. Некоторые ядра радиогалактик,
таких, как Лебедь А и Центавр A (NGC 5128), по-видимому,
двойные; их относят к типу DB, потому что
их форма похожа на гантели (от английского
dumb-bell — гантели).
4. N-галактики, характеризующиеся ярким
звёздообразным ядром, хотя их внешние
структуры иногда легче различить, чем
у сейфертовских галактик.
Почти всегда мощные радиогалактики связаны с гигантскими эллиптическими галактиками. Во многих случаях радиоисточник отождествляется с ярчайшей эллиптической галактикой в скоплении. Поскольку нормальные эллиптические галактики обычно почти лишены газа, яркие оптические спектры эллиптических радиогалактик, характерные для газовых туманностей, указывают, что образование сильного радиоизлучения может быть обусловлено возбужденным газом в ядре. Ширины эмиссионных линий указывают на избыток кинетической энергии в ядре; наблюдаемой ширине линий в Лебеде А соответствуют скорости движений около 400 км/с.
Из приведённого изложения проблем, связанных с радиогалактиками, видно, что перед учёными, разрабатывающими модели, предстаёт множество сбивающих с толку альтернатив. На какое-то время может завоевать популярность некоторый конкретный сценарий, но он будет популярен только до тех пор, пока не появится новая идея, продвигающая некоторые из других альтернатив. Вероятно, на решение таких сложных проблем уйдут многие годы упорного труда. Вряд ли тут поможет озарение, которое обычно находит на учёного в ванной — этом традиционном источнике великих научных открытий!
Выполнила: Угай К.
гр.Бух-33
Ташкент 2013г.