Методы астрономических исследований

Автор: Пользователь скрыл имя, 14 Января 2012 в 17:50, реферат

Описание работы

Со всех сторон нашу Землю окружает необъятный мир небесных тел. Его называют Вселенной или космосом. Лишь некоторые из небесных тел, как, например, Солнце, Луна, планеты и наиболее яркие звезды, можно наблюдать невооруженным глазом. Но во Вселенной бесчисленное множество тел, которые не видны даже в самые мощные телескопы; о них мы судим на основании тех или иных теорий. Все эти тела изучает астрономия. Таким образом, астрономия — наука б строении и развитии космических тел, их систем и Вселенной вообще. Само слово «астрономия» происходит от двух греческих слов: «астрон» означает «светило», «номос» — закон.

Работа содержит 1 файл

Со всех сторон нашу Землю окружает необъятный мир небесных тел.doc

— 72.50 Кб (Скачать)

Спектральный  анализ

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д. 
 
Спектральный анализ основан на том, что сложный свет при переходе из одной среды в другую, например из воздуха в стекло, разлагается на составные части. Если пучок этого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. 
 
Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 700 до 400 ммк. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. 
 
Еще более короткую длину волны имеют рентгеновские лучи, применяемые в медицине. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает. Только недавно оно стало доступно для изучения посредством запусков высотных ракет, поднимающихся выше основного слоя атмосферы. Наблюдения в рентгеновских лучах производят также автоматические приборы, установленные на космических межпланетных станциях. 
 
За красными лучами спектра лежат инфракрасные лучи. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей. 
 
Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, в спектрографе его фотографируют. Фотография спектра называется спектрограммой. 
 
Существуют следующие виды спектров.  
Сплошной, или непрерывный, спектр в виде радужной полоски дают твердые раскаленные тела (раскаленный уголь, нить электролампы) и находящиеся под большим давлением громадные массы газа. Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. Каждый газ излучает набор ярких линий определенных цветов. Их цвет соответствует определенным длинам волн. Они находятся всегда в одних и тех же местах спектра. Изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа. 
 
Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии. Установлено, что спектр атома или молекулы связан с их строением н отражает определенные изменения, происходящие в них в процессе свечения. 
 
Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий и более горячий источник, дающий непрерывный спектр. Спектр поглощения состоит из непрерывного спектра, перерезанного темными линиями, которые находятся втех самых местах, где должны быть расположены яркие линии, присущие данному газу. Например, две темные линии поглощения натрия расположены в желтой части спектра. 
 
Сказанное выше позволяет производить анализ химического состава паров, излучающих свет или поглощающих его, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд — это спектры поглощения.  
 
Надо помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого или жидкого тела при помощи спектрального анализа определить нельзя.  
 
Когда тело раскалено докрасна, в его сплошом спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости "вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа. При нагревании термоэлемента в нем возникает электрический ток, характеризующий количество теплоты, приходящее от светила.

Астрономические наблюдения

Астрономические исследования проводятся в научных  институтах, университетах и обсерваториях. Пулковская обсерватория под Ленинградом  существует с 1839 г. и знаменита составлением точнейших звездных каталогов. Ее в прошлом веке называли астрономической столицей мира.  
 
Не каждая обсерватория ведет все виды астрономических работ. Но на многих обсерваториях есть специальные инструменты, при помощи которых определяют точное положение звезд на небе и точное время. 
 
Первая особенность астрономических наблюдений состоит в том, что наблюдения пассивны и иногда требуют очень длительных сроков. Мы не можем активно влиять на небесные тела, ставить опыты (за исключением редких случаев), как это делают в физике, в биологии. Лишь космонавтика дала в этом отношении некоторые возможности. 
 
Многие явления, например изменение наклона земной оси к плоскости ее орбиты, становятся заметны лишь по истечении громадных сроков. Поэтому для нас не потеряли своего значения некоторые наблюдения, производившиеся в Вавилоне и в Китае тысячи лет назад, хотя они и были по современным понятиям очень неточными. 
 
Вторая особенность астрономических исследований состоит в следующем. Мы наблюдаем положения небесных тел и их движения с Земли, которая сама находится в сложном движении. Вид неба для земного наблюдателя зависит и от того, в каком месте Земли он находится, и от того, когда он наблюдает. Например, когда у нас зимний день, в Южной Америке летняя ночь, и наоборот. 
 
Третья особенность астрономических наблюдений состоит в том, что при наблюдениях во многих случаях мы выполняем угловые измерения и уже из них, когда можно, делаем выводы о линейных расстояниях и размерах тел. Все светила так далеки от нас, что ни на глаз, ни в телескоп нельзя решить, какое из них ближе, какое дальше. Все они кажутся одинаково далекими. Мы говорим, что на небе две звезды близки друг к другу, если близки друг к другу направления, по которым мы их видим. 
 
Диаметры Солнца и Луны в угловой мере для нас примерно одинаковы — около половины градуса, а в линейных мерах Солнце больше: Луны по диаметру примерно в 400 раз, но оно во столько же раз от нас дальше. Поэтому их угловые диаметры для нас почти равны. Высоту светила на небе над горизонтом h можно выражать только в угловых единицах, но никак не в метрах, тем более что и линия горизонта — явление кажущееся. 
 
Измерения высоты, углового расстояния предмета или светила от горизонта, выполняют теодолитом. Теодолит — это зрительная труба, вращающаяся около вертикальной и горизонтальной осей. С осями скреплены круги, разделенные на градусы и минуты. На кораблях и на самолетах угловые измерения выполняют прибором, называемым секстантом  (секстаном)
 

Основа астрономии - наблюдения. Наблюдения доставляют нам основные факты,

которые позволяют  объяснить то или иное астрономическое  явление. Дело в том, что

для объяснения многих астрономических явлений необходимы тщательные измерения и

расчеты, которые  помогают выяснению действительных, истинных обстоятельств,

вызвавших эти  явления. Так, например, нам кажется, что все небесные тела

находятся от нас  на одинаковом расстоянии, что Земля  неподвижна и находится в

центре Вселенной, что все светила вращаются  вокруг Земли, что размеры Солнца и

Луны одинаковы и т.д. Только тщательные измерения и их глубокий анализ помогают

отрешиться от этих ложных представлений.

Основным источником сведений о небесных телах являются электромагнитные волны,

которые либо излучаются, либо отражаются этими телами. Определение направлений,

по которым электромагнитные волны достигают Земли, позволяет  изучать видимые

положения и движение небесных тел. Спектральный анализ электромагнитного

излучения дает возможность  судить о физическом состоянии этих тел.

Особенностью астрономических исследований является также и то, что до последнего

времени у астрономов отсутствовала возможность постановки опыта, эксперимента

(если не считать  исследований упавших на Землю  метеоритов и радиолокационных

наблюдений), и  все астрономические наблюдения производились только с поверхности

Земли.

Однако с запуском первого искусственного спутника Земли  в нашей стране в 1957 г.

началась эра  космических исследований, что позволило  применить в астрономии

методы других наук (геологии, геохимии, биологии и  т.п.). Астрономия продолжает

оставаться наблюдательной наукой, но недалек тот день, когда  астрономические

наблюдения будут  производиться не только с межпланетных станций и орбитальных

обсерваторий, но и с поверхности Луны или других планет. 

Информация о работе Методы астрономических исследований