Автор: Пользователь скрыл имя, 23 Декабря 2012 в 12:25, реферат
При написании данной темы ставились цели и задачи: рассмотреть историю бионики; основные направления бионики; основные достижения бионики в промышленности.
• Введение 3
• 1. История и основные задачи бионики 5
• 1.1. История бионики 5
• 1.2. Основные направления бионики 6
• 1.3. Использование бионики в дизайне 10
• 2. Бионика и промышленный дизайн 14
• 2.1. Использование достижений бионики в промышленности 14
• 2.2. Бионика и архитектура 20
• Заключение 23
• Список использованной литературы 24
Введение
Применяя биологические принципы в графической деятельности, художник-дизайнер пытается вскрыть в природном аналоге особый эстетический вид закономерностей. К использованию природных форм нужно подходить творчески, иначе не удастся получить желаемые результаты.
Специфическая черта современного этапа освоения форм живой природы в предметном мире заключается в том, что сейчас осваиваются не просто формальные стороны живой природы, а устанавливаются глубокие связи между законами развития живой природы и предметного мира.
На современном этапе
дизайнерами используются не внешние
формы живой природы, а лишь те
свойства и характеристики формы, которые
являются выражением функции того или
иного организма, аналогичным функционально-
Графические формы, получаемые в результате творческого процесса освоения законов формообразования живой природы - это уже не формы природы, это синтез природных форм и средств, имеющихся в распоряжении дизайнера.
Широко используются достижения бионики в промышленном дизайне.
Данная тема актуальна тем, что достижения бионики широко используются в промышленном дизайне.
При написании данной темы ставились цели и задачи: рассмотреть историю бионики; основные направления бионики; основные достижения бионики в промышленности.
Работа состоит из введения, двух глав, заключения и иллюстрированных приложений.
В первой главе речь идет о истории возникновении бионики, рассматриваются основные направления бионики, использование бионики в дизайне.
Вторя, глава раскрывает достижения бионики в промышленности, в архитектуре.
При написании данной работы использовались труды следующих авторов: Елочкин М.Е. Введение в современный дизайн; Исайкина Г.М. Дизайнерское образование в зарубежных странах.
1. История и основные задачи бионики
1.1. История бионики
Бионика (от греч. biфn - элемент жизни, буквально - живущий), наука, пограничная между биологией и техникой, решающая инженерные задачи на основе моделирования структуры и жизнедеятельности организмов. Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками - электроникой, навигацией, связью, морским делом и др.
Бионика - наука об использовании в технике знаний о конструкции, принципе и технологическом процессе живого организма. Основу бионики составляют исследования по моделированию различных биологических организмов.
Моделирование осуществляют на радиоэлектронной, электролитической, пневматической и других физико-химических основах. Бионическое моделирование отличается от моделирования, которое осуществляется в других науках. Как правило, модели бионики - несравненно более сложные динамические структуры. Их создание требует не только проведения специальных уточняющих исследований на живом организме, но и разработки специальных методов и средств для реализации и исследования столь сложных моделей. Формальным годом рождения бионики принято считать 1960 год. Ученые - бионики избрали своей эмблемой скальпель и паяльник, соединенные знаком интеграла, а девизом - «Живые прототипы - ключ к новой технике».
Прародителем бионики считается Леонардо да Винчи. Его чертежи и схемы летательных аппаратов были основаны на строении крыла птицы. В наше время, по чертежам Леонардо да Винчи неоднократно осуществляли моделирование орнитоптера.
Из современных ученых можно назвать имя Осипа М.Р. Дельгадо. С помощью своих радиоэлектронных приборов он изучал неврологическо-физические характеристики животных. И на их основе пытался разработать алгоритмы управления живыми организмами.
Подобные опыты проводились и в СССР, в Российской Федерации в связи с общим упадком науки - многие программы свернуты, а специалисты трудятся в зарубежных исследовательских центрах.
1.2. Основные направления бионики
Создание модели в бионике - это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчета заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.
И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа - бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.
Именно так, на основе программного
моделирования, как правило, проводят
анализ динамики функционирования модели;
что же касается специального технического
построения модели, то такие работы
являются, несомненно, важными, но их целевая
нагрузка другая. Главное в них -
изыскание лучшей основы, на которой
эффективнее и точнее всего можно
воссоздать необходимые свойства модели.
Накопленный в бионике
Сегодня бионика имеет несколько направлений.
Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.
Яркий пример архитектурно-строительной бионики -- полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чем же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб -- одним из последних достижений инженерной мысли. Обе конструкции полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия стеблей -- кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.
В последние годы бионика
подтверждает, что большинство человеческих
изобретений уже «
Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 года начали исследования «динамических структур», а в 1991 году организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».
Башня-город будет иметь форму кипариса высотой 1128 м с обхватом у основания 133 на 100 м., а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами -- перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов -- разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты -- аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить еще несколько таких зданий-городов.
В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.
Основными направлениями нейробионики являются изучение нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это дает возможность совершенствовать и развивать электронную и вычислительную технику.
Нервная система живых организмов имеет ряд преимуществ перед самыми современными аналогами, изобретенными человеком:
1. Гибкое восприятие внешней информации, независимо от формы, в которой она поступает (почерк, шрифт, цвет, тембр и т. д.).
2. Высокая надежность: технические системы выходят из строя при поломке одной или нескольких деталей, а мозг сохраняет работоспособность при гибели даже нескольких сотен тысяч клеток.
3. Миниатюрность. Например, транзисторное устройство с таким же числом элементов, как головной мозг человека, занимало бы объем около 1000 м3, тогда как наш мозг занимает объем 1,5 дм3.
4. Экономичность потребления энергии -- разница просто очевидна.
5. Высокая степень самоорганизации -- быстрое приспособление к новым ситуациям, к изменению программ деятельности.
Эйфелева башня и берцовая кость
К 100-й годовщине Великой
французской революции в Париже
была организована всемирная выставка.
На территории этой выставки планировалось
воздвигнуть башню, которая символизировала
бы и величие Французской
1.3. Использование бионики в дизайне
Использование в дизайне законов и форм живой природы вполне правомерно. В основе эволюции живых организмов и графических изображений лежат одни и те же принципы, определяемые взаимодействием форм и функций.
В мире все взаимообусловлено.
Существуют законы, объединяющие весь
мир в единое целое и порождающие
объективную возможность
Правомерность биодизайна предопределяется не только биологическим и техническим единством человечества и окружающего мира, но и особенностями человеческого познания. Человеческий разум в большей степени формируется под влиянием процессов, происходящих в природе.
В своей творческой деятельности человек постоянно, сознательно или интуитивно, обращается за помощью к живой природе. Для всей истории биодизайна характерно использование чисто внешних очертаний природных форм.
Причины особого внимания
дизайнеров к законам формообразования
живой природы заключаются в
том, что графический дизайн как
особый вид искусства имеет
Живая природа имеет тенденцию в процессе своего развития стремиться к всемерной экономии энергии, строительного материала и времени. Закон минимума в живой природе обусловлен органической целесообразностью существования. Все это привело к мысли о возможности использования закономерностей формообразования живых структур именно в конструктивном плане, а не с целью лишь каких-то формальных поисков.
Основные методы дизайнерской бионики