Автор: Пользователь скрыл имя, 17 Декабря 2011 в 20:41, доклад
работа по материаловедению и теории композиционных материалов
КЕРАМИЧЕСКИЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Керамические композиционные материалы имеют керамическую матрицу и содержат металлическую или неметаллическую волокнистую арматуру. Условно к керамическим композиционным материалам относят также композиты с комбинированной матрицей, содержащей тугоплавкие неметаллические частицы и частицы металла, выполняющего функцию связки [1].
Достоинства керамических композитов определяются, в первую очередь, свойствами матрицы. Керамические матрицы обеспечивают наиболее высокий уровень рабочих температур композиционных материалов. Керамика является химически и термически стойким материалом, имеет высокий уровень прочностных свойств на сжатие.
Недостатком
абсолютного большинства
В керамических композиционных материалах нагрузка посредством матрицы передается на волокно. В том случае если модуль упругости волокна при растяжении меньше, чем модуль матрицы, нагрузку в первую очередь воспринимает матрица. При этом увеличение объемной доли волокна приводит к снижению прочностных свойств керамики.
Для того чтобы волокнистая арматура, вводимая в матрицу, обеспечивала увеличение прочностных свойств керамики, необходимо чтобы волокна представляли собой более жесткий по сравнению с керамической матрицей материал. Другим техническим решением, позволяющим повысить прочностные свойства керамики за счет введения армирующих волокон, является предварительное напряжение арматуры [1]. Механизм термического напряжения материала реализуется при использовании волокон, имеющих коэффициент термического расширения больше, чем у матрицы. В этом случае при охлаждении системы, находившейся при повышенных температура, в керамической матрице возникают сжимающие напряжения. Эти напряжения повышают прочностные свойства керамики, снижают склонность матрицы к растрескиванию.
Основными способами производства керамических композиционных материалов являются прессование со спеканием, горячее прессование и шликерное литье. Первая из этих технологий неприемлема для получения композитов, армированных волокнами (особенно большого диаметра). Это объясняется тем, что волокна препятствуют уплотнению порошка, являются причиной образования дефектов структуры матрицы [I].
Тип армирующих волокон, используемых в керамических композиционных материалах, определяется условиями работы изделий (температурой, наличием и видом агрессивной среды). В том случае если армирующими элементами служат металлические волокна, эффективность работы композитов при высоких температурах будут определять газопроницаемость керамической матрицы, наличие в ней трещин. Работоспособность таких композитов при высоких температурах зависит от свойств металлических волокон. Основным фактором, ограничивающим применение металлических волокон в керамических композитах, является их повышенная склонность к окислению при высоких температурах эксплуатации.
Наиболее часто для упрочнения керамики используются волокна вольфрама, молибдена, ниобия, стали [5]. Металлические волокна более пластичны по сравнению с керамикой. Они воспринимают значительную часть нагрузки, сдерживают развитие трещин в композите, выполняют функцию структурных элементов, повышающих трещиностойкость и термостойкость материалов. При увеличении объемной доли металлических волокон до ~ 25 % вязкость и термостойкость керамических композитов повышается. При дальнейшем увеличении содержания волокна возрастает пористость керамических матриц и свойства композитов снижаются. Основными технологическими процессами получения керамических композиционных материалов с металлическими волокнами являются методы горячего прессования и шликерного литья.
При разработке керамических композиционных материалов в качестве армирующих элементов часто используют керамические волокна. Достоинства волокон этого типа заключаются в следующем [I]: малое различие модулей упругости и коэффициентов термического расширения материалов волокон и матрицы; химическое сродство компонентов композитов; жаростойкость керамических волокон. В качестве примера композита такого типа можно отметить материал с матрицей из оксида хрома, армированной усами муллита. Керамические матрицы из оксидов АЬОз и MgO упрочняют монокристаллами Zr02 и MgO, имеющими игольчатую форму, а также пластинчатыми кристаллами Р-глинозема и Сг203. Оптимальная объемная доля упрочняющих элементов составляет 10...20 %. Для получения композитов с пористостью матрицы менее 3 % применяют технологию горячего прессования. По сравнению с неармированной горячепрессованной керамикой термостойкость отмеченных композиционных материалов в 3...5 раз выше [1].
Эффективными
армирующими элементами керамического
типа в композиционных материалах являются
волокна карбида кремния. Эти
волокна применяются в
Керамические композиционные материалы с армирующими керамическими волокнами перспективны для изготовления конструкций ядерных силовых установок, высокотемпературных подшипников, лопаток газотурбинных двигателей, носовых обтекателей ракет, антенных обтекателей летательных аппаратов [5].
В качестве упрочняющих элементов керамических композиционных материалов могут быть использованы углеродные волокна. Для армирования керамики рекомендуется применять высокомодульные волокна. Матрицами в углекерамических материалах могут служить боросиликатные, алюмосиликатные, литиевосиликатные стекла [5].