Автор: Пользователь скрыл имя, 16 Сентября 2011 в 13:53, контрольная работа
Радиоактивные аэрозоли естествепные или искусственные с радиоактивной дисперсной фазой.
Естественные радиоактивные аэрозоли возникают в результате радиоактивного распада изотопов радона, выделяемых с поверхности почвы в атмосферу, а также при взаимодействии частиц космического излучения с ядрами атомов химических элементов, входящих в состав воздуха. Образующиеся при этом радиоактивные атомы оседают на частицах нерадиоактивной атмосферной пыли. С поверхности почвы ветром уносится в атмосферу и пыль, содержащая радиоактивные изотопы калия, урана, тория и др. Некоторое количество радиоктивных аэрозолей попадает в атмосферу с космической пылью и метеоритами.
Вопрос №1. Радиоктивные аэрозоли в стратосфере и тропосфере. Осаждение
радиоактивных аэрозолей на земную поверхность.
Радиоактивные аэрозоли естествепные или искусственные с радиоактивной дисперсной фазой.
Естественные
радиоактивные аэрозоли возникают
в результате радиоактивного распада
изотопов радона, выделяемых с поверхности
почвы в атмосферу, а также при взаимодействии
частиц космического излучения с ядрами
атомов химических элементов, входящих
в состав воздуха. Образующиеся при этом
радиоактивные атомы оседают на частицах
нерадиоактивной атмосферной пыли. С поверхности
почвы ветром уносится в атмосферу и пыль,
содержащая радиоактивные изотопы калия,
урана, тория и др. Некоторое количество
радиоктивных аэрозолей попадает в атмосферу
с космической пылью и метеоритами.
Искусственные
радиоактивные аэрозоли, содержащие
продукты деления и радиоактивные изотопы
с наведённой активностью, образуются
в определённом радиусе при взрыве ядерной
бомбы, а также при технологических или
аварийных выбросах на предприятиях атомной
промышленности, на урановых шахтах и
в обогатительных цехах.
Состав радиактивных аэрозолей зависит от их происхождения и условий существования в атмосфере.
Радиоактивность атмосферы обусловлена присутствием в атмосфере радиоактивных газов и аэрозолей, попадающих в неё в результате процессов, происходящих в природе, и деятельности человека. Соответственно различают естественную и искусственную Р. а. Естеств. радиоактивные газы являются изотопами радона: 222Rn - радон, 220Rn - торон, 219Rn - актинон, и образуются вследствие радиоактивного распада 238U, 232Th и 235U. Они поступают в атмосферу с почвенным воздухом при обмене его с атмосферным или путём диффузии. При радиоактивном распаде изотопов Rn образуются аэрозольные продукты их распада, т. к. возникающие при этом хим. элементы относятся к металлам и не летучи при обычных условиях (Ро, Bi и др.). При этом 222Rn (период полураспада T1/2= 3,8 сут) распространяется в пределах тропосферы, а его долгоживущие продукты распада 210Pb(RaD), 210Bi(RaE), 210Po(RaF) обнаружены в стратосфере. Содержание 222Rn в воздухе над океанами на 2 порядка ниже, чем над материками, а концентрация над земной поверхностью уменьшается примерно вдвое на каждый км высоты. Торон и актинон вследствие малого значения T1/2 (54 сек и 3,9 сек) присутствуют только у земной поверхности. Продукт распада торона 212Pb(ThB) с T1/2 = 10,6 ч обнаруживается в нижней тропосфере. В воздухе над океанами 220Rn, 219Rn и их продукты распада практически отсутствуют.
Основная масса естеств. радиоактивных изотопов (7Be, 10Be, 35S, 32P, 33Р, 22Na, 14С, 3Н), возникающих при взаимодействии космического излучения с ядрами атомов хим. элементов, входящих в состав воздуха, образуется в стратосфере, где и отмечаются наибольшие их концентрации.
Искусств. радиоактивные аэрозоли образуются при ядерных взрывах. Через неск. десятков сек после взрыва они содержат ~ 100 различных радиоактивных изотопов; наиболее токсичными из них считаются 90Sr, 137Cs, 14С, 131I. Высота заброса в атмосферу радиоактивных аэрозолей зависит от мощности и высоты ядерного взрыва, а характер их распространения - от размеров частиц и от высоты заброса их в атмосферу. Наиболее крупные частицы (сотни мкм и выше) быстро выпадают из атмосферы, распространяясь всего на сотни км от места взрыва (локальные выпадения). Однако в случае взрывов мощных ядерных бомб (эквивалентных десяткам мегатонн тринитротолуола) они попадают в стратосферу и, прежде чем выпадут на поверхность Земли, могут пройти в атмосфере тысячи км. Мелкие аэрозоли (размером не более неск. мкм), попавшие при взрыве в верхнюю тропосферу, обычно распространяются вдоль зонального пояса широт с запада на восток, а заброшенные в стратосферу выпадают на поверхность Земли в пределах всего полушария, а в некоторых случаях - в обоих полушариях, поэтому выпадения этих аэрозолей наз. глобальными.
Основной механизм очищения атмосферы от радиоактивных аэрозолей - выпадение осадков. Среднее время t пребывания радиоактивного аэрозоля в нижней тропосфере (до момента его выпадения на земную поверхность) порядка неск. сут, а в верхней тропосфере 20-40 сут. Радиоактивные аэрозоли, попавшие в нижние слон стратосферы, имеют t порядка года и выше. Величина т растёт с увеличением высоты заброса в стратосферу. Обычно большая часть радиоактивных продуктов деления остаётся в пределах того полушария, где проведён взрыв ядерной бомбы.
Концентрация продуктов деления в тропосфере растёт с высотой. Особенно большой рост отмечается при переходе через тропопазу. В стратосфере максимум концентрации продуктов деления по измерениям до осени 1961 отмечался на высоте 19-23 км (примерно на той же высоте, что и слой макс. концентрации нерадиоактивного аэрозоля). Радиоактивное загрязнение атмосферы от предприятий атомной пром-сти имеет чаще всего локальный характер; однако 85Кr распределён по всей тропосфере.
Изучение распространения в атмосфере естеств. радиоактивных аэрозолей, а так, в зависимости от их происхождения колеблется в значит. степени (см. табл.).
Искусств. радиоактивные вещества в воды поступают вместе с осадками из атмосферы (см. Радиоактивность осадков). Так, в результате испытаний ядерного оружия концентрация 90Sr в природных водах до 1968 непрерывно возрастала, достигая в отдельных случаях 10 пкюри/л. Другой осн. источник попадания искусств. радиоактивных веществ в водоёмы - сбросные воды предприятий по производству ядерного топлива.
Лит.: Белоусова И. М., IIIтуккенберг Ю. М., Естественная радиоактивность, М., 1961; Вопросы ядерной метеорологии. Сб. ст., М., 1962, с. 259 - 71; Радиоэкология водных организмов, [в. 1-2]. Рига, 1972-73. . Г. А. Середа.
Вопрос №2. Действие внешнего ионизирующего излучения на организм.
Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы -- в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.
Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.
При изучении действия радиации на живой организм были определены следующие особенности:
· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия -- инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.
· Действие от малых доз может суммироваться или накапливаться.
· Излучение действует не только на данный живой организм, но и на его потомство -- это так называемый генетический эффект.
· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.
· Не каждый организм в целом одинаково воспринимает облучение.
· Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.
Ионизирующее
излучение может двумя
Процессы взаимодействия
ионизирующего излучения с
Первичным актом этого действия является возбуждение и ионизация молекул, в результате чего возникают свободные радикалы (прямое действие излучения) или начинается химическое превращение (радиолиз) воды, продукты которого (радикал ОН, перекись водорода — H2O2 и др.) вступают в химическую реакцию с молекулами биологической системы.
Первичные процессы ионизации не вызывают больших нарушений в живых тканях. Повреждающее действие излучения связано, по-видимому, со вторичными реакциями, при которых происходит разрыв связей внутри сложных органических молекул, например SH-групп в белках, хромофорных групп азотистых оснований в ДНК, ненасыщенных связей в липидах и пр.
Влияние ионизирующего
излучения на клетки обусловлено
взаимодействием свободных
Высвобождающиеся
гидролитические ферменты могут
путем простой диффузии достичь
любой органеллы клетки, в которую
они легко проникают благодаря
повышению проницаемости
Таким образом,
в основе радиационного поражения
клетки лежит нарушение ультраструктур
клеточных органелл и связанные
с этим изменения обмена веществ.
Кроме того, ионизирующая радиация
вызывает образование в тканях организма
целого комплекса токсических
Ионизирующее излучение действует на клетки тем сильнее, чем они моложе и чем менее дифференцированны. На основании морфологических признаков поражаемое органы и ткани распределяются в следующем нисходящем порядке: лимфоидные органы (лимфатические узлы, селезенка, зобная железа, лимфоидная ткань других органов), костный мозг, семенники, яичники, слизистая оболочка желудочно-кишечного тракта. Еще меньше поражаются кожа с придатками, хрящи, кости, эндотелий сосудов. Высокой радиоустойчивостью обладают паренхиматозные органы: печень, надпочечники, почки, слюнные железы, легкие.
Повреждающее действие ионизирующего излучения на клетки при достаточно высоких дозах завершается гибелью. Гибель клетки в основном является результатом подавления митотической активности и необратимого нарушения хромосомного аппарата клетки, но возможна и интерфазная гибель (вне периода митоза) из-за нарушения метаболизма клетки и интоксикации упомянутыми выше радиотоксинами. В результате происходит опустошение тканей из-за того, что не восполняется естественная убыль клеток за счет образования новых.
Гибель клеток и опустошение тканей играют важную, роль в развитии общих поражений организма от ионизирующего излучения — лучевой болезни.