Автор: Пользователь скрыл имя, 23 Ноября 2011 в 17:12, доклад
Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде. А что знал человек о числах несколько тысяч лет назад? Вопрос непростой, но очень интересный. Историки доказали, что и пять тысяч лет назад люди могли записывать числа и производить над ними арифметические действия. Конечно, принципы записи были совсем не такими, как сейчас
История систем счисления
Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры... они с нами везде. А что знал человек о числах несколько тысяч лет назад? Вопрос непростой, но очень интересный. Историки доказали, что и пять тысяч лет назад люди могли записывать числа и производить над ними арифметические действия. Конечно, принципы записи были совсем не такими, как сейчас. Но влюбом случае число изображалось с помощью одного или нескольких символов.
Эти символы, участвующие в записи числа, в математике и информатике принять называть цифрами
Но что же люди понимают тогда под словом "число"?
Первоначально
понятие отвлечённого числа отсутствовало,
число было "привязано" к тем
конкретным предметам, которые пересчитывали.
Отвлечённое понятие
Эталон называется ещё единицей измерения. Понятно, что единица измерения не всегда укладывалась целое число раз в измеряемой величине. Отсюда и возникла практическая потребность ввести более "мелкие" числа, чем натуральные. Дальнейшее развитие понятия числа было обусловлено уже развитием математики.
Понятие числа - фундаментальное понятие как математики, так и информатики. В дальнейшем при изложении материала под числом мы будем понимать его величину, а не его символьную запись.
Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?
Система счисления - это способ записи (изображения) чисел.
Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: позиционные и непозиционные.
Наиболее совершенными являются позиционные системы счисления, т.е. системы записи чисел, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Например, наша привычная десятичная система является позиционной: в числе 34 цифра 3 обозначает количество десятков и "вносит" в величину числа 30, а в числе 304 та же цифра 3 обозначает количество сотен и "вносит" в величину числа 300.
Системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа, называются непозиционными.
Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления.
Единичная система
Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).
Учёные назвали
этот способ записи чисел единичной
("палочной") системой счисления.
В ней для записи чисел применялся
только один вид знаков - "палочка".
Каждое число в такой системе
счисления обозначалось с помощью
строки, составленной из палочек, количество
которых и равнялось
Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.
Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.
Древнеегипетская десятичная непозиционная система
В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.
Пример. Число 345 древние египтяне записывали так:
единицы | |
десятки | |
сотни | |
тысячи | |
десятки тысяч | |
сотни тысяч | |
миллионы |
В основе как
палочной, так и древнеегипетской
системы счисления лежал
Вавилонская шестидесятеричная система
Также далеко от наших дней, за две тысячи лет до н.э., в другой великой цивилизации -вавилонской - люди записывали цифры по-другому.
Числа в этой системе счисления составлялись из знаков двух видов: прямой клин служил для обозначения единиц, а лежачий клин - для обозначения десятков.
Для определения значения числа надо было изображение числа разбить на разряды справа налево. Новый разряд начинался с появления прямого клина после лежачего, если рассматривать число справа налево.
Например: Число 32 записывали так:
Знаки прямой клин и лежачий клин служили цифрами в этой системе. Число 60 снова обозначалось тем же прямым клином, что и 1, этим же знаком обозначались и числа 3600=602, 216000=603 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной.
Значение числа определяли по значениям составляющих его цифр, но с учётом того, что цифры в каждом последующем разряде значили в 60 раз больше тех же цифр в предыдущем разряде.
Пример. Число 92=60+32 записывали так:
а число 444 в этой системе записи чисел имело вид
т.к. 444=7*60+24.
Исключительно для наглядности разделён пробелом (которого не было у вавилонян) старший разряд (левый) и младший.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60.
Запись числа у вавилонян была неоднозначной, т.к. не существовало цифры для обозначения нуля. Запись числа 92, приведённая выше, могла обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ для обозначения пропущенного шестидесятеричного разряда
что соответствует появлению цифры 0 в записи десятичного числа.
Пример. Число 3632 теперь нужно было записывать так:
Но в конце числа этот символ обычно не ставился, т.е. этот символ всё же не был цифрой "ноль" в нашем понимании, и опять же требовались дополнительные сведения для того, чтобы отличить 1 от 60, от 3600 и т.д.
Таблицу умножения вавилоняне никогда не запоминали, т.к. это было практически невозможно. При вычислениях использовались готовые таблицы умножения.
Шестидесятеричная вавилонскаясистема - первая известная нам система счисления, частично основанная на позиционном принципе.
Система вавилонян сыграла большую роль в развитии математики и астрономии, её следы сохранились и до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Следуя примеру вавилонян, мы и окружность делим на 360 частей (градусов).
Римская система
Знакомая нам римская система не слишком принципиально отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, и 1000 используются заглавные латинские буквы I, V, X, C, D и M соответственно, являющиеся цифрами этой системы счисления.
Число в римской системе счисления обозначается набором стоящих подряд цифр. Значение числа равно:
Пример 1. Число 32 в римской системе счисления имеет вид XXXII=(X+X+X)+(I+I)=30+2 (две группы первого вида).
Пример 2. Число
444, имеющее в своей десятичной
записи 3 одинаковые цифры, в римской
системе счисления будет
Пример 3. Число
1974 в римской системе счисления
будет иметь вид MCMLXXIV=M+(M-C)+L+(X+X)+(V-I)
Славянская система счисления
Данная система счисления является алфавитной т.е. вместо цифр используются буквы алфавита. Данная система счисления применялась нашими предками и была достаточно сложной, т.к. использует в качестве цифр 27 букв.
аз | 1 | и | 10 | рцы | 100 | |||
веди | 2 | како | 20 | слово | 200 | |||
глаголь | 3 | люди | 30 | твёрдо | 300 | |||
добро | 4 | мыслите | 40 | ук | 400 | |||
есть | 5 | наш | 50 | ферт | 500 | |||
зело | 6 | кси | 60 | хер | 600 | |||
земля | 7 | он | 70 | пси | 700 | |||
иже | 8 | покой | 80 | o | 800 | |||
фита | 9 | червь | 90 | цы | 900 |