Физиология животных

Автор: Пользователь скрыл имя, 17 Ноября 2011 в 19:15, контрольная работа

Описание работы

Гладкие мышцы — сократительная ткань, состоящая из отдельных клеток и не имеющая поперечной исчерченности (Рис. 1.). У гладкомышечной клетки веретенообразная форма, длина которой примерно 50 - 400 мкм и толщина 2-10 мкм. Отдельные нити соединены особыми межклеточными контактами - десмосомами и образуют сеть с вплетенными в нее коллагеновыми волокнами. Отсутствие поперечной исчерченности, характерной для сердечной и скелетной мускулатуры, объясняется нерегулярным распределением миозиновых и актиновых нитей. Укорачиваются гладкие мышцы также за счет скольжения миофиламентов относительно друг друга, но скорость скольжения и расщепление АТФ здесь в 100 - 1000 раз ниже, чем у поперечнополосатых мышц. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам.

Работа содержит 1 файл

физиология.doc

— 310.00 Кб (Скачать)

     Тип раб:        контрольная  работа

     1. Свойства гладких  мышц, механизм сокращения  гладких мышц. 

     Гладкие мышцы — сократительная ткань, состоящая  из отдельных клеток и не имеющая  поперечной исчерченности (Рис. 1.). У гладкомышечной клетки веретенообразная форма, длина которой примерно 50 - 400 мкм и толщина 2-10 мкм. Отдельные нити соединены особыми межклеточными контактами - десмосомами и образуют сеть с вплетенными в нее коллагеновыми волокнами. Отсутствие поперечной исчерченности, характерной для сердечной и скелетной мускулатуры, объясняется нерегулярным распределением миозиновых и актиновых нитей. Укорачиваются гладкие мышцы также за счет скольжения миофиламентов относительно друг друга, но скорость скольжения и расщепление АТФ здесь в 100 - 1000 раз ниже, чем у поперечнополосатых мышц. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам.

         Гладкие мышцы входят в состав  внутренних органов, сосудов и  кожи. Они отличаются наличием интересных функциональных особенностей: способностью осуществлять относительно медленные движения и длительные тонические сокращения. Медленные движения (сокращения), часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишечника, протоков пищеварительных желез, мочевого пузыря, желчного пузыря, обеспечивают перемещение содержимого этих органов. Примером являются маятникообразные и перистальтические движения кишечника. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тонические сокращения препятствуют выходу содержимого. Это обеспечивает нахождение желчи в желчном пузыре и мочи в мочевом пузыре, формирование каловых масс в толстом кишечнике.

     

     Рис. 1. Показано строение (слева) поперечнополосатых и гладких мышц у позвоночных и зависимость между электрической (сплошные линии) и механической (пунктирные линии) активностью (справа).1 А. Поперечнополосатые мышцы являются многоядерными клетками цилиндрической формы. В них генерируются быстрые потенциалы действия и быстрые сокращения. Б. Волокна гладкой мышцы имеют по одному ядру, небольшой размер и веретенообразную форму. Они соединены между собой боковыми поверхностями через щелевые контакты и образуют электрически объединенные группы клеток. Иннервация диффузная, активация волокон осуществляется за счет высвобождения медиатора из расширений, расположенных вдоль вегетативного нерва. Несмотря на то, что потенциалы действия клеток гладких мышц быстрые, результирующие сокращения развиваются медленно и протекают долго.

     В состоянии постоянного тонического  сокращения находятся тонкие гладкие  мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус  мышечного слоя стенок артерий регулирует величину кровяного давления и кровоснабжение органов.

     Двигательная  иннервация гладких мышц осуществляется отростками клеток вегетативной нервной  системы, чувствительная - отростками клеток симпатических ганглиев. Тонус  и двигательная функция гладких  мышц регулируется также и гуморальными влияниями.

     Все гладкие мышц можно разделить  на две группы:

     1. Гладкие мышцы с миогенной  активностью. Во многих гладких  мышцах кишечника (например, слепой  кишки) одиночное сокращение, вызванное  потенциалом действия, продолжается  несколько секунд. Следовательно, сокращения, следующие с интервалом менее 2с, накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный тонус) (рис.2). Природа такого тетануса миогенная; в отличие от скелетной мышцы гладкие мышцы кишечника, мочеточника, желудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ганглиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импульсов, а имеют миогенное происхождение.

     Миогенное возбуждение возникает в клетках-ритмоводителях (пейсмекерах), которые идентичны  другим мышечным клеткам по структуре, но отличаются электрофизиологическими  свойствами. Пейсмекерные потенциалы деполяризуют мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до +20 мВ. После реполяризации следует новый пейсмекерный потенциал, обеспечивающий генерацию следующего потенциала действия. При воздействии на препарат толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и частота возникновения потенциалов действия возрастает. Вызванные ими сокращения сливаются до почти гладкого тетануса. Чем выше частота следования потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возникающее в результате суммации одиночных сокращений. И, напротив, нанесение на тот же препарат норадреналина гиперполяр изует мембрану и в результате снижает частоту возникновения потенциалов действия и величину тетануса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.

       
 

     Рис.2. Спонтанный потенциал действия (верхняя запись) вызывает в изолированной мышце толстой кишки одиночное сокращение. Обработка ацетилхолином (стрелка) повышает час-тоту возникновения потенциалов действия так, что одиночные сокращения сливаются в тетанус. Нижняя запись - временной ход мышечного напряжения.

     2. Гладкие мышцы без миогенной  активности. В отличие от мышц  кишечника у гладких мышц артерий,  семенных протоков, радужки, а  также у ресничных мышц спонтанная  активность обычно слабая или  ее вообще нет. Их сокращение возникает под действием импульсов, поступающих к этим мышцам по вегетативным нервам. Такие особенности обусловлены структурной организацией их ткани. Хотя клетки в ней электрически связаны нексусами, многие из них образуют прямые синаптические контакты с иннервирующими их аксонами, но привычных нейро-мышечных синапсов в гладкомышечной ткани не образуют. Высвобождение медиатора происходит из многочисленных утолщений (расширений), расположенных по длине вегетативных аксонов (Рис. 1).

     Медиаторы достигают путем диффузии мышечных клеток и активизируют их. При этом в клетках возникают возбуждающие потенциалы, переходящие в потенциалы действия, которые вызывают тетанообразное сокращение.

     Функции и свойства гладких  мышц

     Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется.

     Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

     Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

     Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

     Связь возбуждения с  сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

     В механизме сокращения гладкой мышцы  имеется особенность, отличающая его  от механизма сокращения скелетной  мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина.

     Химическая  чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

     Норадреналин  действует на α- и β-адренорецепторы  мембраны гладкомышечных клеток. Взаимодействие норадреналина с β-рецепторами  уменьшает тонус мышцы в результате активации аденилатциклазы и  образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на α-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

     АХ  оказывает на мембранный потенциал  и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

     Гладкие мышцы некоторых органов реагируют  на различные гормоны. Так, гладкая  мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается. 

     2. Лимбическая система  мозга, ее образования,  их функции. Базальные  или подкорковые  ядра, их функции

     Кроме серой коры на поверхности полушария, имеются еще скопления серого вещества в его толще, именуемые базальными ядрами и составляющие то, что для краткости называют подкоркой. В отличие от коры, имеющей строение экранных центров, подкорковые ядра имеют строение ядерных центров.

     Базальные ядра - участки переднего мозга; скопление серого вещества, состоящего из тел клеток, на которых оканчиваются идущие из коры аксоны двигательных нейронов.

Информация о работе Физиология животных