Колонны синтеза аммиака

Автор: Пользователь скрыл имя, 12 Ноября 2011 в 20:19, реферат

Описание работы

В агрегатах мощностью 1360 т/сут получили распространение аксиальные четырехполочные насадки с предварительным теплообменником и трехполочные с выносным теплообменником.
На рисунке 1.2 показана четырехполочная колонна с аксиальными насадками. Основной поток газа поступает в колонну снизу, проходит по кольцевой щели между корпусом колонны 15 и кожухом катализаторной коробки 3 и поступает в межтрубное пространство теплообменника 6. Здесь синтез-газ нагревается конвертированным газом до 420 – 440°С и проходит последовательно четыре слоя катализатора 8, 10, 12, 14, между которыми подается холодный байпасный газ.

Работа содержит 1 файл

коллонна.doc

— 373.00 Кб (Скачать)

Колонна синтеза аммиака

      В агрегатах мощностью 1360 т/сут получили распространение аксиальные четырехполочные  насадки с предварительным теплообменником  и трехполочные с выносным теплообменником.

      На  рисунке 1.2 показана четырехполочная  колонна с аксиальными насадками. Основной поток газа поступает в колонну снизу, проходит по кольцевой щели между корпусом колонны 15 и кожухом катализаторной коробки 3 и поступает в межтрубное пространство теплообменника 6. Здесь синтез-газ нагревается конвертированным газом до 420 – 440°С и проходит последовательно четыре слоя катализатора 8, 10, 12, 14, между которыми подается холодный байпасный газ.

      После четвертого слоя катализатора газовая  смесь при 500—515 °С поднимается по центральной трубе 2, проходит по трубкам  теплообменника 6, охлаждаясь при этом до 320—350 °С, и выходит из колонны.

      Корпус  катализаторной коробки изготовлен из хромоникелевомолибденовой стали 10Х18Н12М2Т, теплообменник – из стали 12Х18Н10Т.

      В установках производительностью 1600 т/сут  используется колонна другой конструкции. Такая колонна приведена на рисунке 1.3.

 

      Рисунок 1.2 – Четырехполочная  колонна синтеза  аммиака мощностью 1360 т/сут

      1 – люк для выгрузки  катализатора; 2 –  центральная труба; 3 – корпус катализа-торной  коробки; 4 – термопарный  чехол; 5 – загрузочный  люк; 6 – теплообмен  ник; 7, 9, 11, 13 – ввод  байпасного газа; 8, 10, 12, 14 – катализаторные  слои; 15 – корпус  колонны

 

      Рисунок 1.3 – Колонна синтеза  аммиака производительностью 1600 т/сут.

      1 – катализаторная  коробка; 2 – теплообменник; 3 – коллектор; 4 –  внутренние трубки теплообменника; 5 – наружные трубки теплообменника; 6 – коллектор; 7 – катализаторная полка; 8, 9, 10 – полки с катализатором;  

      Колонна кованосварная, в нее вставлена  насадка, состоящая из катализаторной коробки 1, теплообменника и подогревателя. Катализаторная коробка с комбинированной полочной насадкой предназначена для проведения экзотермических процессов синтеза NH3.

      Принципы  работы колонны синтеза с комбинированной  насадкой заключаются в следующем. Через верхнюю крышку колонны поступает основной поток реагирующей газовой смеси.

      Двигаясь  по кольцевой щели, образованной кожухом  катализаторной коробки, соединенной  с предварительным теплообменником  и внутренней обечайкой колонны, поток направляется в межтрубное пространство теплообменника, а отсюда через центральную трубу нагретый газ поступает в распределительный коллектор 3 верхней катализаторной полки 7 с трубчатым теплообменником.

      Потом газовая смесь последовательно  проходит через внутренние 4 и наружные 5 трубки теплообменника, в которых она нагревается за счет тепла, выделенного в результате реакции, и поступает в катализатор, находящийся между трубками.

      Температурный режим на верхней трубчатой полке  регулируется подачей байпасного газа 6 в коллектор 3. Выйдя из трубчатой  части катализаторной коробки, газовая смесь последовательно проходит через ниже расположенные полки 8, 9, 10 с катализатором. Причем температурный режим в слое катализатора регулируется па каждой из полок подачей байпаспого газа. Выйдя из катализаторной коробки, конвертированный газ проходит трубчатую часть теплообменника 2, охлаждается и направляется в паровой котел.

      Конструкция комбинированной полочной насадки  объединяет положительные стороны  трубчатой и полочной насадки, которая  обеспечивает: высокую регулируемую температуру для интенсивного развития реакции, включение в работу нижних катализаторных слоев, возможность регулирования температурного режима по высоте всего слоя катализатора и невысокое гидравлическое сопротивление.

      Кожух насадки колонны изолирован с  двух сторон по всей высоте. В катализаторную коробку вмонтированы два кармана, в которые через крышку колонны вставляют термопары. Крышка колонны с корпусом уплотнена двумя прокладками на обтюраторном кольце. Катализатор в катализаторную коробку загружают при горизонтальном положении коробки через загрузочные люки. Коробка должна быть вне колонны на специальном вибрационном устройстве для плотной укладки катализатора. 
 
 
 
 
 

Установка для синтеза аммиака

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  На  установках с трубопроводами горячего газа, изготовленными из стали специальных марок, температура газовой смеси, выходящей из колонн синтеза, может составлять 250 °С.

  Наиболее  сложно регулирование режима работы колонны синтеза. Оно производится в основном по температуре «горячей точки», т. е. наиболее нагретой зоны катализатора. С увеличением объемной скорости температура в зоне реакции снижается, уменьшение объемной скорости приводит к противоположным

  * Реакция  С+ 2Н= СН4, приводящая к уменьшению количества углерода в стали и нарушению ее структуры, при температуре более 200 °С резко усиливается.

  результатам. Изменением интенсивности циркуляции газа целесообразно пользоваться до тех пор, пока не будет установлена наиболее выгодная нагрузка агрегата по газу. В дальнейшем нагрузку изменяют только при резких расстройствах технологического режима. Постоянным приемом регулирования температуры процесса синтеза является изменение соотношений газовых потоков, направляемых в колонну через главный вентиль и холодный байпас (иногда два байпаса, а в колоннах с полочной насадкой — даже четыре). При повышении температуры, наблюдаемом ранее всего на входе газа, открывают вентиль холодного байпаса до тех пор, пока температура не достигнет заданной нормы. Если же при полном открытии этого вентиля температура продолжает возрастать, для поддержания ее в нужных пределах прикрывают главный вентиль, что приводит к увеличению потока газа, идущего через холодный байпас.

  При понижении температуры поступают  обратным образом. Сначала полностью  открывают главный вентиль, затем  постепенно прикрывают вентили- холодного байпаса. Если эти меры не дают эффекта, приходится уменьшать количество газа, подаваемого в колонну.

  В насадках колонн с двумя холодными байпасами (см. рис. VI-12, стр. 296) можно регулировать температуру как в верхней, так и в нижней и средней зонах катализатора и достигать наиболее выгодного соотношения температур в верхних и нижних слоях катализатора. В ^колоннах с полочной насадкой по существу регулируется температура на каждой полке в отдельности .

  В ходе технологического процесса требуется  также постояннее регулирование работы других аппаратов установки синтеза аммиака (высота уровней жидкости в сепараторах аммиака, температура конденсации газа и другие параметры).

  Автоматическое  управление агрегатом синтеза. Схема  агрегата с автоматическим управлением процессом синтеза аммиака показана на рис. У1-26. При таком управлении агрегатом автоматически регулируются следующие параметры процесса: температура в колоннах синтеза; уровни жидкого аммиака в сепараторе и конденсационной колонне; температура газа, выходящего из аммиачного конденсатора; состав циркуляционного газа по содержанию инертных примесей (СНи Аг); выдача жидкого аммиака из газоотделителя на склад; давление в газоотделителе. ••$

  Для автоматического регулирования  используется наиболее распространенная в настоящее время пневматическая унифицированная система. Каждый узел регулирования состоит из датчика, преобразующего контролируемую или регулируемую величину в выходной сигнал, удобный для дистанционной передачи и дальнейшего преобразования в соответствующий импульс; регулятора, состоящего из одного или нескольких блоков, обе-

  спечивающих поддержание заданного закона регулирования технологического параметра; вторичного прибора (самопишущего или показывающего) с встроенным датчиком и* переключателем; исполнительного механизма — регулирующего клапана с пневмо-приводом или другого устройства. Общий принцип действия системы можно пояснить на примере автоматического регулирования температуры в колонне синтеза.

  

  Рис. У1-26. Агрегат синтеза аммиака с автоматическим управлением:

  У—колонна синтеза; 2—водяной конденсатор; 3—сепаратор жидкого аммиака; 4—конденсационная колонна; 5—испаритель; 6—центробежный циркуляционный компрессор; 7—газоотделитель; а—регулирующий клапан; Г—измерители температуры; Ь—измерители уровня; Р— измеритель давления; С—регулятор состава.

  Электродвижущая сила (э. д. с.), возникающая в термопаре (датчике), пропорциональна температуре, которая отсчитывается на шкале измерительного прибора. Отклонение температуры от заданной преобразуется специальным устройством в импульс давления воздуха, приводящий в действие систему регулирования. Чем больше отклонение, тем сильнее воздействие, передаваемое регулятором органу управления.

  При повышении температуры открывается  вентиль холодного байпаса, при снижении он прикрывается. Если этот прием регулирования не приводит к повышению температуры при закрытом байпасе, регулирование производится изменением объемной скорости. При этом регулятор начинает подавать сигнал на открытие вентиля «длинного байпаса», вследствие чего уменьшается количество газа, подаваемого в колонну циркуляционным компрессором.

  Нарушения режима и меры их предупреждения. Нарушения  технологического режима могут вызываться ненормальной работой смежных звеньев производственного процесса или внутренними причинами, в большинстве случаев непосредственно зависящими от обслуживающего персонала. К первой группе причин относятся: подача газа, загрязненного контактными ядами (чаще всего окисью углерода), резкое нарушение соотношений водорода и азота в газе, а также прекращение подачи охлаждающей воды или электроэнергии.

  При содержании в газе более 300 см*1мСО прием азото-водо-родной смеси в цех синтеза прекращается. Если же работа отделения компрессии не переведена на режим выхлопа газа, он выдувается из агрегата синтеза. При этом необходимо постоянное наблюдение за давлением в системе, так как иначе возможно резкое повышение давления и разрыв трубопроводов. В тех случаях, когда при увеличении количества СО в газе, ее содержание не превышает 300 сма!м*, работа цеха синтеза обычно продолжается, но автоматизированные колонны следует переводить на ручное управление, не дожидаясь снижения в них температур. При этом прикрывают вентили холодного байпаса, уменьшают циркуляцию газа и прекращают продувку агрегатов после первичных сепараторов, заменяя ее продувкой до колонн. Одновременное понижение температуры в нескольких колоннах может происходить не только при попадании в газ окиси углерода, но и при резком нарушении состава свежего газа. При этом принимаются меры к поддержанию заданной температуры в колоннах.

  В случае прекращения подачи воды требуется  немедленная остановка цеха. В  противном случае произойдет повышение  температуры газа перед циркуляционными  компрессорами и прекратится охлаждение их сальников.

  Из  внутренних причин нарушения режима наиболее нежелательные последствия вызываются неправильной выдачей жидкого аммиака на склад. При этом повышается уровень жидкости в конденсационных колоннах, что может привести к попаданию жидкого аммиака в колонны, резкому снижению температуры катализатора, следствием чего часто является поломка насадки колонн синтеза.

  Превышение  уровня жидкого аммиака в первичных  сепараторах может закончиться их переполнением и перебросом жидкого аммиака в циркуляционные компрессоры. Вследствие этого в цилиндрах нагнетателей возникают гидравлические удары, которые могут привести к разрушению машин.

  Опасно  также понижение уровней в  указанных аппаратах {ниже нормы), так как при этом может исчезнуть гидравлический затвор, и газ под давлением 300 ат устремится в трубопроводы для жидкого аммиака. В результате возможно разрушение газоотделителя. Если даже при этом сработают предохранительные устрой- ства, неизбежно разлитие жидкого аммиака с возможностью отрав-ления им людей. При малейших неполадках в работе автоматического управления следует переходить на ручное обслуживание с выдачей жидкого аммиака из сепаратора («подгаз») и следить за давлением по манометрам, установленным на трубопроводах для жидкого аммиака.

Информация о работе Колонны синтеза аммиака