Автоматизированный электропривод

Автор: Пользователь скрыл имя, 28 Мая 2013 в 18:40, дипломная работа

Описание работы

Целью этого дипломного проекта является разработка электропривода центробежного насоса с использованием современной элементной базы, обеспечивающего выполнение следующих требований:
экономия электроэнергии;
возможность гибкой настройки привода при меняющихся режимах работы;

Содержание

Введение 10
1. Технические требования к электроприводу насосной установки .13
2. Общие сведения о технологическом процессе и задаче автоматизации
насосной установки 18
2.1. Назначение и виды насосных станций 18
2.2. Насосные установки 21
2.2. Регулирование режимов работы насосных установок 22
Аналитический обзор методов управления насосными установками 29
3.1. Регулировка подачи насосов 29
3.2. Выбор принятых показателей качества 35
3.2. Обоснование выбора системы регулирования привода по схеме ПЧ-АД…………………………………………………………………….………..36
Определение основных элементов электропривода 43
4.1. Расчет мощности и выбор электродвигателя насосной
установки 43
4.2. Расчет и выбор преобразовательного устройства 47
4.3. Выбор датчика давления 52
4.4. Расчет и выбор кабеля питания 54
4.5. Выбор аппаратов защиты 56
5. Синтез системы управления 58
Разработка структурной схемы 58
Расчет параметров передаточной функции объекта управления….59
Синтез контура регулирования давления………………………….60

Математическое моделирование и исследование динамических режимов САК………………………………………………………………………………….…83
Спецвопрос…………………………………………………………………………..90
Техническая реализация системы автоматизации ……………………………….93
Технико-экономические расчеты ….………………………………………….103
Охрана труда при эксплуатации системы автоматизации насосной установки станции подкачки жилищного комплекса………………………. 119
Вывод……………….…………………………………………………………..149
Список используемых источников ………………………………………….....1

Работа содержит 1 файл

DIPLOM_new_1.doc

— 2.85 Мб (Скачать)

В насосных станциях должна предусматриваться автоматизация следующих вспомогательных процессов: промывки вращающихся сеток по заданной программе, регулируемой по времени или перепаду уровней, откачки дренажных вод по уровням воды в приямке, электроотопления по температуре воздуха в помещении, а также вентиляции.

 

2.3.2. Структура автоматизированной НС

Упрощенная электрическая  схема силовых цепей показана на рис.2.3а. Штриховой линией со звездочкой обозначена взаимная механическая блокировка контактных аппаратов, запрещающая одновременное подключение электродвигателя к сети и к преобразователю частоты. Взаимодействие блоков станции и гидравлической системы показано на рис.2.3б.

Упрощенная структурная  схема автоматизированной НС с частотно-регулируемым электроприводом приведена на рис. 2.4.

Электроснабжение НС осуществляется от трансформаторной подстанции ТП. Электроэнергия поступает на распределительное устройство РУ, к которому подключено силовое электрооборудование. Здесь же размещены первичные аппараты для средств учета потребляемой электроэнергии.

Силовое электрооборудование  размещено в электрощитовой НС. Оно  содержит: силовые шкафы управления СШУ, преобразователь частоты ПЧ и, при необходимости, компенсатор  реактивной мощности КРМ. Силовой шкаф управления содержит коммутационный аппарат, с помощью которого осуществляется коммутация питания электропривода М центробежного насоса Н либо к выходу ПЧ, либо к секции РУ.

 

Рис. 2.4 – Структурная схема автоматизированной насосной станции

 

В машзале НС размещено  основное и вспомогательное оборудование НС. Основное оборудование включает насосы ЦН1–ЦН3, электроприводы М1–М3. В состав вспомогательного оборудования входят: дренажные, пожарные, вакуум-насосы; задвижки; вентиляторы; обогреватели и другое оборудование. Управление им производится при помощи исполнительных механизмов ИМ1–Имn.

Для получения информации о значениях регулируемых параметров служат датчики Д1–Дm.

Сигналы управления и  измерительные сигналы от оборудования НС собираются в шкафу управления ШУ. Здесь же происходит их объединение  в одну общую информационную линию связи, которая подключается к технологическому контроллеру ТК.

Технологический контроллер реализует общий алгоритм управления НС и обмен информацией с автоматизированной системой управления технологическим  комплексом АСУ ТК. Программное обеспечение ТК содержит ряд функциональных блоков, реализованных на программном уровне:

управление основной насосной установкой;

управление дополнительной насосной установкой, например пожарными насосами;

управление дренажными насосами;

измерение и обработка параметров оборудования НС;

управление отоплением и вентиляцией помещений НС;

осуществление функций охраны от несанкционированного проникновения посторонних лиц на территорию НС;

обслуживание локального терминала;

Передача информации о параметрах и режимах работы оборудования НС на АСУ ТК и обработка сигналов управления, получаемых от нее.

Вывод.

В даном разделе дипломного проекта рассмотрены общие сведения о технологическом процессе и задаче автоматизации насосной установки. Приведены сведения о типах насосных установок и их составляющих частей, осных режимах работы и способах обеспечения заданного режима работы НС.

 

3. Аналитический обзор  методов управления насосными  установками

3.1. Регулировка подачи  насосов

Подача насоса регулируется, в основном, тремя разными способами:

  • Дросселированием с помощью клапанов
  • Прерывистым регулированием (пуск – остановка)
  • Регулированием   скорости   вращения  насоса с помощью   регулируемого электропривода

На промышленных предприятиях наиболее распространенный способ регулирования дросселированием. Это регулирование осуществляется путем введения в нагнетающую магистраль различных заслонок. КПД регулирования дросселированием значительно хуже чем КПД регулированием скорости вращения, при котором экономия энергии часто превышает 50%. Этот способ применяется для маломощных установок и характеризуется небольшим диапазоном регулирования. Преимуществом этого способа является простота реализации.

Регулирование насосов на водопроводных и водоочистительных сооружениях выполняется прерывистым способом регулирования. К недостаткам этого способа принадлежат: невысокий КПД, частые пуски и остановки, отрицательно действующие на трубопроводы и оборудование, невозможность плавного регулирования. При использовании данного способа регулирования необходимо предусматривать необходимый запас по мощности двигателя. Преимуществом этого способа является достаточно высокая экономичность, поскольку отсутствуют дополнительные потери при регулировании подачи.

Регулирование скорости вращения позволяет осуществлять точное и плавное регулирование. Благодаря применению регулирования скорости вращения трубопроводы и клапаны получают меньшую нагрузку; увеличивается их срок службы, и уменьшается потребность в их обслуживании [4].

В отличие от прямого пуска, электродвигатель насоса с регулированием от преобразователя частоты получает из сети лишь часть пускового тока. Таким образом, габаритные размеры электрооборудования можно сократить и снизить затраты на их приобретение. Благодаря применению приовода с преобразователем частоты габариты двигателя можно уменьшить на 10-20%.

Статическая нагрузка на магистраль уменьшается, так как система не работает постоянно при высоком давлении. Давление поддерживается на заданном уровне.

Динамические нагрузки заметно снижаются при «мягком» регулировании в сравнении с прерывчатым регулированием. Устраняются гидравлические удары, которые изнашивают трубопроводы и оборудование. Срок службы оборудования может даже удваиваться.

Регулирование путем изменения скорости вращения также позволяет осуществлять экономию энергии [4].

Исходя из вышесказанного, как способ регулирования напора выбираем регулирование путем изменения скорости вращения насоса.

Механизмы центробежного  типа в силу особенностей их конструкций и условий технологического процесса не требуют реверсирования, их скорость согласуется со скоростью двигателя, поэтому електропривод этих установок выполняется безредукторным и поставляется обычно вместе с механизмом.

Отличительной особенностью рассмотренной группы механизмов есть облегченные условия их пуска. Эти механизмы, как в нормальных условиях, так и после аварийного отключения пускаются, как правило, вхолостую. При этом момент трогания не превышает 30-35% номинального момента. Для установок вентиляторного типа, которые пускаются под нагрузкой, момент сопротивления плавно возрастает с увеличением скорости, которая благоприятно согласуется с формой механической характеристики асинхронного двигателя. В результате прямой пуск рассмотренных механизмов с асинхронным короткозамкнутым двигателем или синхронным двигателем с асинхронной пусковой обмоткой происходит под действием практически неизменного динамического момента. Отмеченные особенности механизмов центробежного типа разрешают в большинстве случаев для их привода использовать нерегулированные асинхронные двигатели с короткозамкнутым ротором. В установках значительной мощности целесообразное применение синхронных двигателей, которые позволяют   активно   влиять   на   результирующую   реактивную мощность, потребляемую из сети промышленным предприятием.

На некоторых больших установках вентиляторного типа суммарный момент инерции электропривода значительно превышает момент инерции двигателя. При этом прямой пуск оказывается затянутым и сопровождается значительным нагреванием обмоток асинхронного короткозамкнутого или синхронного двигателя. Поэтому в электроприводе указанных установок находят применение асинхронные двигатели с фазным ротором и в том случае, когда регулирование скорости не нужно. Реостатный способ пуска таких двигателей облегчает процесс разгонки установки, уменьшает пусковые тока и нагрев обмоток двигателя.

Множество насосных установок работают в условиях агрессивной, взрывоопасной среды, при высоких температурах и влажности. Для таких установок применяются преимущественно асинхронные короткозамкнутые двигатели закрытого выполнения. Для особенно тяжелых условий эксплуатации двигатели специальной конструкции.

В установках, которые требуют плавного и автоматического регулирования подачи, электропривод выполняется регулированный. Характеристики механизмов центробежного типа создают благоприятные условия работы регулируемого электропривода, как относительно статических нагрузок, так и необходимого диапазона регулирования скорости. Из механических характеристик следует, что при уменьшении скорости, по крайней мере квадратично, снижается и момент сопротивления на валу двигателя. Это облегчает тепловой режим двигателя при работе на сниженной скорости. Необходимый диапазон регулирования скорости при условии отсутствия статического напора Нст=0 не превышает заданный диапазон изменения подачи.

В среднем  для регулируемых механизмов центробежного  типа необходимый диапазон регулирования скорости обычно не превосходит 2:1. Отмеченные особенности данных механизмов и невысокие требования относительно жесткости механических характеристик позволяют успешно применять для них простые в реализации варианты регулированного асинхронного электропривода [5-7].

Рассмотрим  основные варианты применяемых регулируемых электроприводов.

Для установок сравнительно небольшой мощности (7-10 кВт) задача регулирования успешно решается с помощью системы регулятор напряжения –асинхронный двигатель с короткозамкнутым ротором. Как регулятор напряжения применения находит тиристорный коммутатор. Вентиляторная механическая характеристика нагрузки позволяет обеспечить устойчивую работу электропривода по системе тиристорный коммутатор – асинхронный двигатель в довольно большом диапазоне скорости без обратных связей.

Обычное изменение технологического режима, в котором принимает участие регулируемый электропривод, протекает довольно медленно и не требует высокого быстродействия. Поэтому как регулятор напряжения может быть использован трехфазный магнитный усилитель, включенный в цепь статора. Довольно просто реализовать и импульсный способ регулирования скорости асинхронного двигателя. Тиристорный ключ, замыкаясь и размыкаясь, изменяет среднее за цикл коммутации значения дополнительного сопротивления. Это сопротивление пропорционально скважности широтно-импульсной модуляции. Регулируя скважность, можно получить семейство механических характеристик электропривода. Скважность зависит от управляющего напряжения на входе системы управления тиристорным ключом. Так как критическое скольжение двигателя уменьшается при увеличении дополнительного сопротивления, то диапазон скоростей устойчивой работы привода даже при «вентиляторной» характеристике механизма оказывается довольно незначительным. Введение обратной связи по скорости обеспечивает жесткие механические характеристики и устойчивую работу замкнутой системы электропривода в необходимом для механизма диапазоне скоростей.

Общим недостатком  рассмотренных вариантов регулированного  электропривода есть выделение потерь скольжения при снижении скорости в самом двигателе. Эти потери вызывают дополнительное нагревание двигателя и требуют соответствующего завышения установленной мощности двигателя.

В установках, где по условиям эксплуатации допустимо применение асинхронного двигателя с фазным ротором, возможности регулируемого электропривода расширяются. Введение дополнительного сопротивления в цепь ротора позволяет вывести часть потерь скольжения из обмоток двигателя. Благодаря этому снижается необходимое завышение габарита двигателя и появляется возможность расширить диапазон мощностей привода при рассмотренных выше способах регулирования скорости. Например, импульсный способ регулирования окажется более целесообразным относительно коммутации дополнительного сопротивления в роторной цепи. При этом механические характеристики привода обеспечивают устойчивую работу в довольно большом диапазоне скоростей при разомкнутой системе электропривода.

Во всех рассмотренных  вариантах имеют место значительные потери скольжения, которые рассеиваются в виде тепла в обмотках двигателя, в регулировочных сопротивлениях или в муфте скольжения, и КПД электропривода оказывается низким. Поэтому для электроприводов рассмотренных механизмов мощностью от сотни и тысячи киловатт находят применение каскадные варианты регулирования скорости, в которых потери скольжения возвращаются в сеть или на вал двигателя.

При больших диапазонах регулирования (D >2) и высоких требований к жесткости механических характеристик электропривода перспективна схема транзисторный преобразователь частоты — асинхронный двигатель с короткозамкнутым ротором. Отсутствие необходимости в электрическом торможении и реверсе привода механизмов центробежного типа упрощает структуру транзисторного преобразователя частоты и позволяет выполнить его на базе автономного инвертора напряжения и управляемого выпрямителя.

Первоначально из-за отсутствия надежных и дешевых преобразователей частоты (ПЧ) для управления скоростью насоса в продолжительном режиме пытались использовать преобразователи напряжения (ПН), т.е осуществлять так называемое параметрическое регулирование.

Этот способ привлекателен  тем, что тиристорный преобразователь  напряжения (ТПН) очень прост и дешев. Однако, существует принципиальное ограничение на использование параметрического регулирования в продолжительном режиме – большие потери энергии в двигателе. Для того, чтобы все-таки использовать этот способ, энтузиасты идут на завышение установленной мощности электродвигателя в 2-2,5 раза, использование специально ухудшенного ротора с повышенным скольжением.

Информация о работе Автоматизированный электропривод