История вычеслительной техники

Автор: Пользователь скрыл имя, 08 Ноября 2011 в 06:40, реферат

Описание работы

Давным-давно, в 1945 г. — когда вычислительная техника уже была электронной, но ещё релейно-ламповой (хотя британцы уже во Второй Мировой Войне использовали германиевые диоды) — руководство американской компании BellLabs основало группу под руководством Уильяма Шокли по исследованию полупроводниковой замены вакуумным лампам, что и произошло через 2 года с изобретением транзистора. А в 1948 г. «transistron» был независимо изобретён работающими во Франции двумя немецкими физиками — ХэрбертомМатаре и ХайнрихомВелкером.

Работа содержит 1 файл

Как всё начиналось.docx

— 226.70 Кб (Скачать)

В том  же 2009 г. IBM реализовала в массовом производстве технологию воздушных зазоров (Airgap) в качестве внутрислойных изоляторов, разделяющих медные проводники одного слоя. Состоит такой диэлектрик из тонкостенных пузырей размером в 20 нм, стенки которых собираются из полимера методом самосборки. Пузыри содержат, вопреки названию, не воздух, а вакуум — идеальный изолятор с проницаемостью, равной 1 (впрочем, у воздуха почти столько же). По заявлению IBM, с уменьшением межпроводной ёмкости чип потребляет на 35% меньше энергии или работает на 15% быстрее. Впрочем, почувствовать это могли лишь покупатели серверов IBM с ЦП архитектуры POWER. «Могли», потому что в 32-нанометровом процессе IBM воздушные зазоры исчезли — видимо, механическая прочность «дырявого» слоя оказалась слишком малой для его достаточно низкодефектной планаризации.

Пример  современного техпроцесса

 
Устройство 45-нанометрового p-канального транзистора в микросхемах Intel. Тут не указано присутствие в затворе слоя металла для n-канального транзистора.

Чтобы подытожить всё вышенаписанное, приведём описание «скоростного» 45-нанометрового  техпроцесса Intel как одного из наиболее изученных:

  • используется пластина из цельного кремния (не КНИ) и сухая литография на 193 нм с двойным шаблонированием;
  • длина затвора — 35 нм (как и в 65-нанометровом процессе);
  • шаг затвора — 160 нм без изоляторов (на 27% меньше, чем в 65-нанометровом) и 200 нм с ними (на 9% меньше);
  • осаждение металлического «затвора последним»;
  • спрямление углов затвора с помощью покрытия вторым видом фоторезиста;
  • эквивалентная толщина высокопроницаемого подзатворного изолятора — 1 нм;
  • для улучшения подвижности дырок у p-канальных транзисторов легирование германием истока и стока увеличено с 23 до 30%, что в совокупности увеличило частоту на 51%;
  • сонаправленные по всему чипу каналы;
  • 10-слойные межсоединения (начиная со 2-го слоя — медные) с изолятором из легированного углеродом диоксида кремния, включая размещённый на истоках и стоках «нулевой» слой вольфрама, также служащий диффузионным барьером;
  • почти везде чётные слои металла параллельны каналам, нечётные — перпендикулярны;
  • последний, наиболее толстый слой металла работает как термо- и энергораспределитель для всего кристалла;
  • обильное использование фиктивных структур (дорожек и затворов) для выравнивания локальной плотности и теплопроводности;
  • бессвинцовая пайка кристалла в корпус.
 
На одной 300-миллиметровой  пластине умещается 568 процессоров  Core 2 Duo с 6 МБ кэша L2, изготовленных по технорме 45 нм. Средний темп выхода пластин при производстве на фабах Intel — ≈20 мин. на лот (25 пластин). Проверить пластину на сбойность менее чем за 50 секунд полностью не получится, поэтому применяется быстрая оценка состояния транзисторов. Для этого в свободных местах каждого будущего кристалла расположены десятки простейших осцилляторов (чёрные точки), транзисторы которых имеют те же параметры, что и для окружающей логики или кэшей. Замерив частоты каждого осциллятора и зная их расположение, для каждого процессора строится карта отклонений параметров транзисторов. Тут на ней зелёным обозначены средние параметры, жёлтым и красным — замедленные, а голубым и синим — ускоренные. После разрезания пластины на отдельные кристаллы те, которые после оценочных тестов признаны хоть на что-то годными, отправляются на сборочный завод. Там они корпусируются, проходят программирование прошивки, детальное тестирование, отключение неработающих, медленных или слишком прожорливых частей (если требуется) и присваивание множителей и напряжений.
 
 
4 последних поколения транзисторов  Intel (слева направо, сверху вниз) — 90 (2003 г., первое применение напряжённого кремния), 65 (2005), 45 (2007, первое применение комбинации HKMG) и 32 (2009) нм.
 
 
65-нанометровые транзисторы (слева)  могли себе позволить такие  роскошества как двунаправленные  дорожки (вертикали и горизонтали)  и переменные размеры затворов  и их шагов. Для 32-нанометрового  техпроцесса (справа) всё это запрещено.
 

Общим взглядом…

Данные с IC Knowledge, если не указано иное.

 
Технорма наиболее сложных микросхем. Падает также их цена — правда, не вдвое (исходя из примерно половинной площади чипа для данного числа транзисторов — за исключением последних техпроцессов…), а примерно в 1,5 раза при каждом переходе на очередной техпроцесс (т. к. он сложнее и дороже на каждую единицу площади). По какой причине физическая длина затвора (не только для ЦП Intel) оказывается меньше технормы — читайте ниже.
 
 
Технорма для ЦП Intel. По мнению компании, 15-нанометровый техпроцесс, возможно, станет первым, где будет применяться «экстремальный» ультрафиолет (EUV), если он окажется экономически оправданным. До сих пор чрезвычайная дороговизна (даже по меркам фотолитографов) сдерживала его внедрение, которое 10 лет назад пророчили уже для 45-нанометрового процесса. Основные причины — необходимость в совершенно новом источнике излучения, новой зеркальной (а не линзовой) оптике и полном вакууме в рабочей зоне.
 
 
Площади кристаллов наиболее сложных  микросхем процессоров и памяти на указанный год. В 1990-е годы тенденция  увеличения площади на 14% в год (чёрная линия) остановлена. Впрочем, самые  сложные кристаллы ГП и серверных  ЦП достигают 400–500 мм², но и эта цифра  не растёт уже лет пять, хотя почти  все производители уже успели с 90-х перейти на 300-миллиметровые  пластины, позволяющие производить  с той же массовостью и ценой  даже такие большие кристаллы.
 
 
Число транзисторов на кристалле ИС как следствие уменьшения технормы и увеличения площади кристалла. Видно, что первоначальная тенденция 2-кратного роста в год, по которой строил свои рассуждения Гордон Мур, была в прямом смысле весьма крутой. Но с 70-х и микросхемы ДОЗУ (теперь — и флэша), и процессоры продолжили её с меньшими темпами — 58% и 38% в год.
 
 
Число слоёв, требующих  маски. До введения двойного шаблонирования равно числу самих масок. Каждая маска требует 7–8 производственных операций, а также контрольно-измерительные и транспортные. Примерно 20% слоёв в каждом кристалле (элементы транзисторов и первые слои дорожек и изоляторов) являются «критическими» — т. е. выполнены с номинальной технормой для данного техпроцесса. Остальным достаточно быть всё более грубыми по мере удаления вверх от транзисторов (см. иллюстрацию воздушных зазоров), т. к. верхние уровни металла, как правило, поставляют питание и синхронизацию, так что особой плотности проводников им не требуется. Таким образом наиболее дорогие технологии изготовления применяются только для части слоёв, но даже это не спасает от растущей сложности техпроцессов, особенно с 2000-х годов. 20 лет назад такое уже было с технологией БиКМОП (гибрид биполярной и КМОП), из-за чего от неё отказались (правда, Intel успела выпустить на ней 486DX4, Pentium и P.Pro, а Sun Microsystems — SuperSPARC). Сегодня от взрывного роста сложности не страдают пока только динамическая и (в меньшей степени) флеш-память. Сверхбыстрым SiGe-чипам высокая стоимость не сильно мешает, т. к. их изготавливают малыми партиями для военных и авиакосмических применений. В среднем число масок увеличивается на 2 с каждым техпроцессом, т. е. примерно за 2 года.
 
 
Плотность дефектов на 1 см² площади  кристалла от наиболее продвинутых  фабов при финальном тестировании. Жирными цифрами указана технорма в микронах, в скобках — диаметр пластин.
 
 
Снова плотность дефектов, но конкретно  для чипов Intel. По её утверждению — также отложенная по логарифмической шкале (как и на графике выше), только без шкалы. ;) Данные для 45- и 32-нанометрового техпроцессов показаны не до конца — видимо, коммерческая тайна.
 
 
Стоимость постройки наиболее современного на указанный год завода (или его  стоимость после обновления) возросла в 70 раз за 30 лет, а цена каждого  выпускаемого ими транзистора упала  в 2000 раз. Пустые квадраты означают примерные  цифры. Тут не хватает графика  производственной мощности, но надёжных данных по ней на весь период нет. Впрочем, известно, что современные фабы выпускают от 10 до 60 тыс. пластин в месяц в случае логики и ещё в 2–3 раза больше для памяти. Выпуск пластин удваивается примерно каждые 5 лет, помимо увеличения их диаметра. А «удвоение стоимости фаба каждые 4 года» даже было названо «вторым законом Мура» (иначе — законом Рока, Rock’s law), который в конце 90-х также пришлось поправить — каждые 5 лет. Наиболее дорогой станок — фотолитограф — дорожает с такой же скоростью: первый коммерческий проекционный степпер (1973 г.) стоил 210 тыс. долларов, а современный сканер — 40–50 млн..
 
 
Удельные цены пластины и разных видов микросхем за единицу их наиболее ценных количественных характеристик. Чёрная линия указывает ежегодное  падение средней цены на 35% или  в 1,54 раза. Больше возможностей за ту же цену чипов позволяли расти продажам микросхем на 15% в год с 1960 по 2000 гг.. Однако лопнул пузырь доткомов, а через 8 лет грянул мировой кризис, что прекратило рост продаж (но не параметров). В 2010-х за счёт популярности смартфонов и планшетников возможен рост примерно на 5% в год, если, конечно, опять что-то не стрясётся…
 
 
Стоимость разработки сложной микросхемы в зависимости от технормы (данные IBS, GlobalFoundries). Видно, что до 45 нм она каждый раз удваивалась, а начиная с 45 нм — увеличивается примерно в 1,5 раза. Абсолютные цифры уже выросли настолько, что и среди бесфабричных компаний мелким игрокам на рынке ЦП делать нечего.
 
Средняя стоимость производства пластины для КМОП-логики в 2003 г. на фабах Сев. Америки (в долларах):
Диаметр пластины, мм Технорма, мк Число маскируемых слоёв
8 10 12 14 16 18 20 22 24 26
100 2 145 180 210              
125 165 200 230              
150 190 230 270              
1,2   260 300 340            
0,8       375 420 465        
200       450 500 560        
0,5         560 615 675      
0,35           700 760 830    
0,25           890 980 1070 1155  
0,18             1320 1440 1565  
0,13               1815 1970 2130
300               2500 2690 2890
0,09                 2860 3065
 
Цены округлены и  не учитывают финишных операций (тестирования, резки и корпусировки). По цифрам видно, почему производителям выгодно переходить на новые техпроцессы и бо́льшие диаметры пластин — дорожание производства каждой новой пластины окупается бо́льшим числом получаемых с неё чипов. Впрочем, переход на больший диаметр означает замену почти всего оборудования в чистой комнате и усиление потока сверхчистых рабочих материалов (особенно воды), поставляемых с сервисного этажа. А переход на новый техпроцесс, даже «несвежий», поначалу (пока его не отладят) даст меньший выход годных. Впрочем, Intel и тут отличилась, применяя на своих фабах по всему миру методику точного копирования (Copy Exactly): как только техпроцесс доведён до массового производства на одном из экспериментальных фабов в Хиллсборо (штат Орегон, США), он переносится на производственные фабы, копируя абсолютно всё до мелочей — список и тип станков, их параметры («рецепты») и программы, действия персонала… Даже ручные инструменты для монтажных и пуско-наладочных работ используются тех же видов. Звучит несколько параноидально, но Intel может перенести техпроцесс с одной фабрики на другую без ожидаемого в таких случаях ущерба для себестоимости всего за несколько месяцев, и ещё быстрее — производство чипа при уже готовом техпроцессе.

Новый шаг

В начале лета 2011 г. Intel объявила, что менее чем через год будет готова массово выпускать процессоры с технормой 22 нм (сначала это будет архитектура Ivy Bridge

, основанная на  современной Sandy Bridge). Согласно принятому в компании 2-летнему циклу «тик-так» (попеременному ежегодному выпуску новой микроархитектуры и нового техпроцесса) изначально планировалось выпустить Ivy Bridge в конце 2011 г. (также как Sandy Bridge — в 2010-м). Однако Intel преследуют задержки: презентация Sandy Bridge состоялась только этим январём, а недавно компания решила задержать выход Ivy Bridge как минимум до весны 2012 г.. Являются ли тому причиной сложности с техпроцессом — неясно. Это при том, что первые микросхемы СОЗУ с новыми 22-нанометровыми транзисторами Intel представила ещё в сентябре 2009 г..

Никаких технологических  революций по части литографических  методов не предвидится — помимо того, что длина волны 193 нм требует иметь не только иммерсионные сканеры, но и как минимум двойное шаблонирование. Это само по себе является любопытным, ибо ещё 5 лет назад эксперты в один голос говорили, что для таких длин волн надо переходить на новые виды литографии, что скачкообразно увеличивает сложность и стоимость техпроцесса.

 
Помимо FinFET’ов, Intel рассматривала ещё 4 варианта новых видов транзисторов, но по разным причинам они были отклонены. Например, технически самый совершенный GAA-транзистор с затвором, полностью окружённым изолятором, видимо, показался слишком дорогим или ненадёжным. Кроме того, т. к. странная зелёная «шапка» ни на каких других иллюстрациях больше не встречается и не видна на микрофотографиях, можно сделать вывод, что реализован вариант с 3-сторонним затвором типа Trigate.

Но самую большую  сенсацию (разумеется, с подачи маркетологов компании) назначили на серьёзное  изменение конструкции транзисторов, назвав их трёхмерными или трёхзатворными. Точнее, их надо называть FinFET — полевой транзистор с затвором-«плавником». Впрочем, за счёт утончения канала и размещения его вертикально их число может быть более одного для увеличения общей площади между затвором и каналами. Такой транзистор можно назвать многозатворным (multigate FET, MuGFET), хотя каждый его канал скорее будет управляться общим затвором. В результате к нему нужно будет приложить меньшее напряжение, чтобы переключить транзистор, скорость переключения будет больше, а утечка — меньше, т. к. теперь она возможна лишь через узкую нижнюю грань канала.

 

 
Транзистор на цельной подложке (какую до сих пор использует Intel) имеет утечку тока из канала, когда в нём полем затвора формируется обращённый слой. Подложка (даже если она заземлена) вытягивает часть носителей заряда в обеднённый слой.
 
Уменьшить утечки можно технологией  КНИ, в данном случае — частично обеднённой (Partially Depleted, PD SOI). Тут изолятор отсекает подложку, но остаточный слой под каналом («плавающее тело») всё ещё приводит к утечкам, хоть и не таким большим. Эта технология широко используется прежде всего из-за относительной дешевизны.
 
Более продвинутая версия — полностью  обеднённый КНИ (Fully Depleted, FD SOI). Тут исток, сток и область канала истончаются так, что плавающему телу не остаётся места. Проблема утечки решается, но (по мнению Intel) с 10-процентным увеличением цены чипа, поэтому её не используют широко.
 
А вот и решение Intel (показанное сбоку, в отличие от предыдущих сечений вдоль канала) — поставить канал вертикально и окружить его затвором с трёх сторон из четырёх. Плавающего тела нет, утечек нет, площадь обращённого слоя больше, а т. к. дополнительные маски не требуются, цена — всего на 2–3% выше. Опять же, со слов Intel.
 
«Трёхзатворный» транзистор на деле означает транзистор с каналом, окружённым затвором (через прослойку в виде тонкого изолятора, обозначенного жёлтым) с трёх сторон — по сравнению с планарным, где поверхность сопряжения представляет собой одну плоскость.
 
Вверху показаны 32-нанометровые планарные  транзисторы, внизу — 22-нанометровые 2- (в левом нижнем углу) и 6-затворные  «трёхмерные».
 
4 поколения «плавниковых» транзисторов  Intel — демонстрация конструкции (2002 г.), многозатворность (2003), ячейки СОЗУ (2006) и адаптация металлического «затвора последним» (2007).

 

 
Сечение канала-плавника в образце 2006 г. с первой версией технологии HKMG.

Конечно, Intel сразу похвасталась, что по сравнению с 10-микронным техпроцессом от i4004 22-нанометровый транзистор работает в 4000 раз быстрее, потребляя в 5000 меньше энергии и стоя в 50 000 меньше. Более важно, что потребовалось 5 лет для разработки и ещё 5 (как теперь выяснилось…) для адаптации к массовому производству. При этом Intel честно указывает на трудности реализации новой технологии: необходимость законцовок для затвора, проблемы с ёмкостью и изменчивостью параметров, трудности равномерной полировки и травления более толстых структур и передача каналом механического напряжения под затвор, и пр.. Надо полагать, все эти проблемы решены хотя бы удовлетворительно, иначе показанные чипы бы не работали. Вопросы о коэффициенте выхода годных и фактической себестоимости пока остаются открытыми. Конкуренты же (TSMC и Global Foundries) пока объявили лишь о начале разработки FinFET’ов для своих 14-нанометровых процессов, которые будут готовы где-то в 2014 г.…

 
Вольтамперные характеристики (ВАХ) планарного (чёрная линия) и двух трёхмерных (синие) n-канальных  транзисторов. Ток при нуле на затворе  в идеале должен быть нулевым. Чем  он меньше — тем меньше потребляет процессор, в т. ч. при простое. Пороговое  напряжение — такое, при котором  транзистор переключается (в данном случае — 0,33 В с током в 10% от номинала). Оно должно быть как можно меньше, чтобы транзистор срабатывал быстрее  и при меньшем напряжении питания (тут — 1 В). Переход на трёхмерный затвор позволяет либо при том  же напряжении уменьшить утечку при  закрытом канале (нижняя линия), либо увеличить  скорость его открытия (верхняя линия), заодно снизив напряжение.
 
 
Зависимость времени  переключения от напряжения питания (в  идеале — гипербола) для 32-нанометровых (чёрная линия) и 22-нанометровых (серая) планарных, а также 22-нанометровых объёмного (синяя) транзисторов. Последний позволяет  при той же скорости снизить напряжение питания на 0,2 В, что в теории уменьшит потребление в 1,56 раза, а по мнению Intel — более чем вдвое. Если же требуется повысить частоту, новые транзисторы принесут небольшую пользу при номинальном одном вольте (обещано ускорение на 18% относительно 32 нм), зато при 0,7 В (видимо, таково будет напряжение для мобильных чипов) дадут аж 37-процентное ускорение. Более того, если судить по этим графикам из презентации, то ускорения будут на 22% и 59% — т. е. 1/(1−0,18) и 1/(1−0,37), как и следует считать. Неужели мы застукали технарей Intel на элементарных ошибках при расчётах с процентами?..

Информация о работе История вычеслительной техники