Соотношение генотипа и фенотипа

Автор: a*************@gmail.com, 24 Ноября 2011 в 19:52, контрольная работа

Описание работы

Генетика различает основные формы изменчивости; генотипическую, передаваемую по наследству, и фенотипическую, не передаваемую по наследству. Наиболее ярко наследственная изменчивость проявляется в мутациях — перестройках наследственного основания, генотипа организма. Крупная мутация всегда выражается в форме более или менее резкого наследственного морфофизиологического уклонения единственной особи среди многих других, остающихся неизменными. Но в большинстве случаев мутации имеют вид небольших уклонений.

Содержание

Введение 3
1. Основные проблемы генетики и механизм воспроизводства жизни 5
2. Соотношение генотипа и фенотипа 10
3. Генетика и эволюция 13
Заключение 17
Список использованной литературы 18

Работа содержит 1 файл

Генетика и эволюция.doc

— 101.00 Кб (Скачать)

   Живые организмы постоянно испытывают воздействие разнообразных факторов Среды обитания. Среда может влиять на формирование как количественных, так и качественных признаков. Среда приводит к естественному отбору как фактору эволюции в результате борьбы за существование. Он основывается на преимущественном выживании наиболее приспособленных особей каждого вида и гибели менее приспособленных. Под борьбой за существование понимают внутривидовую и межвидовую конкуренцию, отношения хищник-жертва, взаимодействие с абиотическими факторами Среды и т. д. Однако наряду с конкуренцией существует и взаимопомощь у особей в пределах вида.

   В процессе эволюции происходит направленное изменение фенотипа и генотипа вследствие размножения организмов. Приспособленность к определенным условиям Среды не означает прекращения естественного отбора в популяций. Существует форма отбора, которая постоянно исключает уклоняющихся от нормы особей, — так называемый стабилизирующий отбор.

   К середине XX века эволюционная теория Дарвина была дополнена следующими положениями: отрицание наследования приобретенных признаков; доказательство постепенности эволюционного процесса; осознание эволюции как процесса, протекающего на популяционном уровне; подтверждение фундаментальной роли естественного отбора; выявление механизмов наследственной изменчивости и оценка ее вклада в эволюционный процесс; установление эволюционных закономерностей — онтогенеза (индивидуального развития организма).

   Как резюмировал Вернадский, "Живой, динамический процесс бытия, науки, связывающий прошлое с настоящим, стихийно отражается в среде обитания человечества, является все растущей геологической силой, превращающей биосферу в ноосферу. Это природный процесс, независимый от исторических случайностей".

   Законы  эволюции требуют дальнейшего изучения, но существуют современные гипотезы, подкрепленные фактами палеонтологии, биогеографии, сравнительной эмбриологии и биохимии.

   Рассматривая  эволюцию на молекулярном уровне, можно сказать, что направленная эволюция обусловливает развитие популяции молекул в определенном направлении, благодаря циклам селекции, амплификации и мутаций.

   Молекулярный  биолог может читать гены какого-либо организма как исторический документ, свидетельствующий о его эволюции, но написанный химическим языком (структура молекулы ДНК). В настоящее время исследуется и сам механизм, производящий эволюционные изменения.          Разработанные математические модели эволюции позволяют выявить общие закономерности эволюции различных систем. Они опираются на теорию информации и самоорганизации.

   Современные данные палеонтологии говорят о  квантовом характере видообразования. В соответствии с геологическим  временем этот процесс почти мгновенен. Анализ уравнений популяционной генетики показывает, что процесс видообразования похож на фазовый переход.

   Биология  как наука о жизни

 

     

     ЗАКЛЮЧЕНИЕ 

     Естествознание  затрагивает широкий спектр вопросов о многочисленных и всесторонних проявлениях свойств Природы.

     В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. Методами генетической инженерии удалось получить интерферон и инсулин. Объектом биотехнологии выступает сегодня не только отдельный ген, но и клетка в целом.

     Клеточная инженерия открывает широкие  возможности практического использования  биомассы культивируемых клеток и создания на их основе промышленных технологий, например, для быстрого клонального микроразмножения и оздоровления растений.

     Применение  методов клеточной инженерии позволяет существенно интенсифицировать процесс создания новых форм организмов. Метод гибридизации соматических клеток — новый метод, дающий возможность получать межвидовые гибриды, т.е. преодолевать естественный барьер межвидовой нескрещиваемости, чего нельзя было достичь традиционными методами селекции. Для этого в искусственно созданных условиях выделяют и сливают протопласты - клетки, лишенные стенок, — обоих родительских растений и получают гибридные клетки, которые могут затем регенерировать целое гибридное растение с признаками обоих родителей. Это позволяет получать совершенно новые организмы, не существовавшие в природе. Но при этом возникает опасность, что искусственно созданные организмы могут вызвать непредсказуемые и необратимые последствия для всего живого на Земле, в том числе, и для человека.

     Генная  и клеточная инженерия обратили внимание человечества на необходимость общественного контроля за всем, что происходит в науке.

 

      ЛИТЕРАТУРА: 

  1. Горелов А.А. Концепции современного естествознания. – М.: Центр, 1997.
  2. Жигалов Ю.И. Концепции современного естествознания – М.: Гелиос АРВ, 2002
  3. Ф.Кибернштерн, Гены и генетика. Москва, «Параграф», 1995.

Информация о работе Соотношение генотипа и фенотипа