Эволюционная теория

Автор: Пользователь скрыл имя, 07 Декабря 2011 в 20:13, реферат

Описание работы

При всей кажущейся очевидности отличий живой материи от неживой, следующих из определений жизни, между ними невозможно провести резкую границу. Хотя наиболее просто устроенные "живые тела" - вирусы — вне клеток живых организмов, то есть в неактивной форме, проявляют свойства кристаллов и, в определенном смысле, сближаются с неживыми телами, их нельзя рассматривать в качестве переходной ступени между неживым и живым веществом. Это крайне специализированные живые тела, которые могли появиться в биосфере не ранее, чем полноценные клеточные организмы, и уж в любом случае - после появления нуклеиновых кислот (генетических матриц).

Содержание

1. Живая материя как единство растительного и животного мира
2. Белок как основа живой материи
3. Гены и генетика
4. Человек как феномен природы
Заключение "Генетика, генный код, геном человека"

Работа содержит 1 файл

реферат.docx

— 59.11 Кб (Скачать)

Выделение человека из мира природы знаменовало рождение качественно нового материального  единства, ибо, как известно, человеку присущи не только природные свойства, но и социальные. Общество встало в  противоречия с природой в двух отношениях: во-первых, как социальная действительность, оно есть не что иное, чем сама природа; во-вторых, оно целенаправленно  с помощью орудий труда воздействует на природу, изменяя ее.

Природные и  социальные системы находятся во взаимодействии. Природная среда, географические и климатические условия оказывают  значительное воздействие на жизнь  людей, обуславливают во многом разнообразие обществ, особенности развития этносов, народностей, наций.

В то же время  сама природа испытывает на себе "организующую" силу общества. Человек по своему усмотрению "окультуривает" природу, искусственно "упорядочивая" ее. И вопрос здесь  заключается в мере этого гармоничного воздействия. Отсутствие гармоничного взаимодействия социальной и природной  системы приводят к экологическим  кризисам и катастрофам. Уже на заре индустриальной цивилизации в XIX в. появились первые признаки ухудшения качества биосферы, связанные с загрязнением атмосферы крупных городов, источников воды и питания.

Но с особой остротой экологические проблемы встали перед человечеством во второй половине XX в., что послужило одним из признаков кризиса индустриальной культурно-исторической эпохи. Корни этих проблем, причины разрушительной деятельности человека следует видеть не в неведении или злом умысле, а в так называемом техническом типе мышления, когда природа рассматривается как источник сырья для материального производства. Для этого типа мышления характерно то, что человек мало задумывается над смыслом вещей, а увлечен лишь некоторыми из их различных сторон. Решение экологических проблем зависит от способности человечества изменить позицию по отношению к окружающему миру, изменить тип мышления. Необходимо осознание того, что живая природа и человечество - это единый организм, что жизнь общества - это составная часть глобального биохимического процесса. 

Приложение (вместо заключения)

"Генетика, генный  код, геном человека" 

Генетика представляет собой одну из основных и сложных  дисциплин современного естествознания. Место генетики среди биологических  наук и особый интерес к ней  определяются тем, что она изучает  основные свойства организмов, а именно наследственность и изменчивость.

В результате многочисленных экспериментов в области молекулярной генетики современная биология обогатилось  двумя фундаментальными открытиями, которые уже нашли широкое  отражение в генетике человека, а  частично и выполнены на клетках  человека.

Первое  открытие - это возможность работать с изолированными генами. Она получено благодаря выделению гена в чистом виде и синтезу его.

Второе открытие - это  включение чужеродной информации в геном, а также функционирование его в клетках высших животных и человека.  

Материалы для  этого открытия накапливались прежде всего в области вирусо-генетической теории возникновения злокачественных опухолей, включая обнаружение синтеза ДНК на РНК-матрице.

Без преувеличения  можно сказать, что, наряду с молекулярной генетикой, генетика человека относится  к наиболее прогрессирующим разделам генетики в целом. Ее исследования простираются от биохимического до популяционного, с включением клеточного и организменного уровней.

Нуклеиновые кислоты, как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов.  Выяснение структуры ДНК открыло новую эпоху в биологии, так как позволило понять, каким образам живые клетки точно воспроизводят себя и как в них кодируется информация, необходимая для регулирования их жизнедеятельности. Нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся длинные молекулы - полинуклеотиды. Молекула нуклеотида состоит из трех частей: пятиуглеродного сахара, азотистого основания и фосфорной кислоты. Сахар, входящий в состав нуклеотидов, представляет собой пентозу.

Различают два  типа нуклеиновых кислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). В обоих типах нуклеиновых  кислот содержатся основания четырех  разных видов: два из них относятся  к классу пуринов, другие - к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

Нуклеиновые кислоты  являются кислотами потому, что в  их молекулах содержится фосфорная  кислота. В результате соединения сахара с основанием образуется нуклеотид. Это соединение происходит с выделением молекулы воды. Для образования нуклеотида требуется еще одна реакция конденсации, в результате которой, между нуклеотидом  и фосфорной кислотой возникает  фосфорэфирная связь. Разные нуклеотиды отличаются друг от друга природой сахаров и оснований, которые входят в их состав. Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот.

Два нуклеотида, соединяясь, образуют динуклеотид, т.е. эфирный мостик, который за счет прочных ковалентных связей сообщает всей нуклеотидной цепи прочность и стабильность, что очень важно, так как в результате этого уменьшается риск «поломок» ДНК.

РНК имеет две  формы: транспортную (тРНК) и рибосомную (рРНК). Они имеют довольно сложную структуру. Третья форма РНК - это информационная, или матричная (мРНК). Все эти формы участвуют в синтезе белка.

Рибосомная РНК кодируется особыми генами, находящимися в нескольких хромосомах. Последовательность в рРНК сходная у всех организмов. Оно содержится в цитоплазме, где образует вместе с белковыми молекулами клеточные органеллы, называемые рибосомами. На рибосомах происходит синтез белка. Что касается тРНК, то они играют роль связующих звеньев между триплетным кодом, содержащимся в мРНК и аминокислотной последовательностью в полипептидной цепи.

Последовательность  оснований в нуклеотидах ДНК  должна определять аминокислотную последовательность белков. Эта зависимость между  основаниями и аминокислотами является генетическим кодом. С помощью четырех  типов нуклеотидов записаны параметры  для синтеза белковых молекул. В  настоящее время успехи молекулярной биологии достигли такого уровня, что  стало возможно определить последовательность оснований в целых генах. Эта  серьезная веха в развитии науки, ток как теперь можно искусственно можно синтезировать целые гены. Это нашло применение в генной инженерии.

Единственные  молекулы, которые синтезируются  под прямым контролем генетического  материала клетки, - это белки (если не считать РНК). Белки могут быть структурными или играть функциональную роль и быть ответственными за регуляцию  клеточного метаболизма. Именно набор  содержащихся в данной клетке ферментов  определяет, к какому типу клеток она  будет относиться. В 1961 году два французских  биохимика Жакоб и Моно, исходя из теоретических соображений, постулировали  существование особой формы РНК, выполняющей в синтезе белка  роль посредника. Впоследствии этот посредник  получил название мРНК.

На Земле не существует двух совершенно одинаковых людей, за исключением однояйцовых  близнецов. Причины этого многообразия нетрудно понять с генетических позиций. Число хромосом у человека - 46 (23 пары). Если допустить, что родители отличаются по каждой поре хромосом лишь по одному гену, то общее количество возможных  генотипических комбинаций - 223. Но самом  деле количество возможных комбинаций будет намного больше, так как в этом расчете не учтен перекрест между гомологичными хромосомами. Следовательно, уже с момента зачатия каждый человек генетически уникален и неповторим.

Гены, находящиеся  в половых хромосомах, называются сцепленными с полом. Явление  сцепления генов, локализированных в одной хромосоме, известно под  названием закона Моргана. В X-хромосоме  имеется участок, для которого в Y-хромосоме нет гомолога.  Поэтому у особи мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Это особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом, например цветовой слепоты, раннего облысения и гемофилии у человека. Гемофилия - сцепленный с полом рецессивный признак, при котором нарушается свертывание крови. Ген, детерминирующий этот процесс, находится в участке Х-хромосомы, не имеющем гомолога, и представлен двумя аллелями -доминантным нормальным и рецессивным мутантным.

Особи женского поло, гетерозиготных по рецессиву или по доминанту, называют носителем соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей-носителей с вероятностью 50% будут страдать гемофилией.

Изменчивость  организмов является одним из главных  факторов эволюции. Она служит основным источником для отбора форм, наиболее приспособленных к условиям существования. Изменчивость является сложным процессом. Обычно биологи делят ее на наследственную и ненаследственную. К наследственной изменчивости относят такие изменения признаков и свойств организмов, которые при половом размножении не исчезают, сохраняются в ряду поколений. К ненаследственной изменчивости - модификациям, или флюктуациям, относят изменения свойств и признаков организма, которые возникают в процессе его индивидуального развития под влиянием факторов внешней среды, сложившейся специфическим образом для каждого индивидуума, и при половом размножении не сохраняются.

Наследственная  изменчивость представляет собой изменение  генотипа, ненаследственная – изменение  фенотипа организма.

Термин "мутация" впервые был предложен Гуго де Фризом в его классическом труде "Мутационная теория" (1901–1903). Мутацией он называл явление скачкообразного, прерывного изменения наследственного признака. Основные положения теории Г. де Фриза до сих пор не утратили своего значения, и поэтому их следует здесь привести;

1) мутация возникает  внезапно, без всяких переходов;

2) новые формы  вполне константны, т.е. устойчивы;

3) мутации в  отличие от ненаследственных  изменений (флюктуации) не образуют  непрерывных рядов, не группируются  вокруг среднего типа (моды). Мутации  являются качественными изменениями;

4) мутации идут  в разных направлениях, они могут  быть кок полезными, так и  вредными;

5) выявление  мутаций зависит от количества  особей, проанализированных для  обнаружения мутаций.

6) Одни и те  же мутации могут возникать  повторно.

Однако Г. де Фриз допустил принципиальную ошибку, противопоставив теорию мутаций  теории естественного отбора. Он неправильно  считал, что мутации могут сразу  давать новые виды. приспособленные к внешней среде, без участия естественного отбора. На самом деле мутации являются лишь источником наследственных изменений, служащих материалом для естественного или искусственного отбора.

Термин "ген" был впервые применен для обозначения  наследственно-обусловленного признака Иогансеном в 1911 г. Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом. Прямые доказательства того, что мутации гена человека вызывают изменение в первичной структуре белков получены в 1949 г. Полингом.

Исследуя первичную  структуру гемоглобина, выделенного  из эритроцитов больных с серповидно клеточной анемией, Полинг показал, что подвижность аномального гемоглобина в электрическом поле (электрофорез) изменено по сравнению с нормальной. С этого открытия началась новая эра открытий в человеческой биохимической генетики наследственных болезней обмена. Они вызываются мутациями генов, которые продуцируют белки с аномальной структурой, что приводит к изменению их функций.

Большинство организмов хранят генетическую информацию в ДНК: последовательность нуклеотидов одной  цепи точно определяет последовательность в другой, и обе цепи являются комплементарными одна другой. Последовательность четырех нуклеотидов вдоль полинуклеотидной цепи варьирует среди ДНК неродственных организмов и является молекулярной базой их генетического расхождения. Поскольку большинство наследственных характеристик стабильно передается от родителей к потомству, последовательность нуклеотидов в ДНК должна точно копироваться при репродукции организма. Это имеет место в обеих цепях. Последовательность нуклеотидов и отсюда генетическая информация консервируется в ходе процесса репликации.

Хотя в настоящее  время вопрос о природе гена выяснен  не окончательно, тем не менее прочно установлен ряд общих закономерностей мутирования гена. Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов. Мутационная изменчивость как процесс качественных скачкообразных изменений является всеобщей для всех органических форм.

Информация о работе Эволюционная теория