Древнерусское государство и Московская Русь

Автор: Пользователь скрыл имя, 13 Июня 2013 в 16:37, контрольная работа

Описание работы

Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах или, как их называют, в разных полиморфных модификациях. В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа. Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать α, а при более высокой – β, затем γ и т. д.

Работа содержит 1 файл

Материаловедение.doc

— 456.00 Кб (Скачать)

Министерство  образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное  учреждение высшего профессионального  образования

«Национальный исследовательский  Томский политехнический Университет»

 

 

 

Институт

дистанционного образования

 

Автоматизация технологических процессов

и производств (в нефтегазовой области)  

 

 

 

 

 

 

Древнерусское государство  и Московская Русь

(впишите тему вашей работы)

 

Индивидуальное домашнее задание № 1

(впишите  номер индивидуального  домашнего задания)

 

по дисциплине:

Отечественная история 
(впишите дисциплину)

 

 

 

 

 

 

Исполнитель:

 

студент группы

Д-8200

 

Иванов Иван Иванович

 

01.02.2011

           

Руководитель:

 

преподаватель

         
           

 

 

 

Томск ¾ 2012

Содержание.

 

Опишите явление полиморфизма в приложении к олову.

Многие металлы  в зависимости от температуры  могут существовать в разных кристаллических  формах или, как их называют, в разных полиморфных модификациях. В результате полиморфного превращения атомы  кристаллического тела, имеющие решетку  одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа. Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать α, а при более высокой – β, затем γ и т. д.

При полиморфном превращении кристаллы (зерна) новой полиморфной формы растут в результате неупорядоченных, взаимно связанных переходов атомов через границу фаз. Отрываясь от решетки исходной фазы (например, β), атомы по одиночке или группами присоединяются к решетке новой фазы (α), и, как следствие этого, граница зерна α-модификации передвигается в сторону зерна β-модификации, «поедая» исходную фазу. Зародыши новой модификации наиболее часто возникают на границах зерен исходных кристаллитов. Вновь образующиеся кристаллы закономерно ориентированы по отношению к кристаллам исходной модификации.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

Олово полиморфно. Ниже температуры 13,2°С устойчива α-модификация (серое олово) с кубической кристаллической решеткой типа алмаза; выше 13,2°С устойчива β-Sn (белое олово) с тетрагональной кристаллической решеткой. При переходе β-модификации в α значительно (на 25%) увеличивается удельный объем металла.

 

Какая температура разделяет районы холодной и горячей пластической деформации и почему? Рассмотрите на примере железа.

В зависимости  от отношения температуры деформации к температуре рекристаллизации различают холодную и горячую  деформацию.

Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.

Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры.

Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.

Наименьшую температуру  начала рекристаллизации, при которой  протекает рекристаллизация и происходит разупрочнение металла, называют температурным порогом рекристаллизации. А. А. Бочвар показал, что между температурным порогом рекристаллизации и температурой плавления металлов имеется простое соотношение: рекристаллизация начинается при температуре, составляющей одинаковую для всех металлов долю от температуры плавления по абсолютной шкале. Температура начала рекристаллизации металлов, подвергнутых значительной деформации, для технически чистых металлов составляет примерно 0,4 Тпл (правило А.А. Бочвара), для чистых металлов снижается до (0,1...0,2)Тпл, а для сплавов твердых растворов возрастает до (0,5...0,6)Тпл.

Температура начала рекристаллизации железа:

(1539 + 273)·0,4 - 273 = 452 °С.

При пластической деформации выше этой температуры деформация называется горячей, при пластической деформации ниже этой температуры – холодной.

 

Вычертите диаграмму состояния  «железо – карбид железа», укажите

структурные составляющие во всех областях диаграммы, опишите  превращения для сплава, содержащего 3,8% С. Какова структура этого сплава при комнатной температуре, и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод  начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1% заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD,начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой

ЖР4,3

Л[А2,146,67]. 

Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит + ледебурит, эвтектических — ледебурит и  заэвтектических — цементит (первичный) + ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой

А0,8

П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.

Доэвтектоидные  стали при температуре ниже 727ºС, имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный, в виде сетки по границам зерен.

В доэвтектических  чугунах в интервале температур 1147-727ºС при охлаждении из аустенита  выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических  чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

Правило фаз  устанавливает зависимость между  числом степеней свободы, числом компонентов и числом фаз, и выражается уравнением:

C = K + 1 – Ф,

где    С – число степеней свободы системы;

К – число  компонентов, образующих систему;

1 – число  внешних факторов (внешним фактором  считаем только температуру, так  как давление за исключением  очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф – число  фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 3,8% С, называется доэвтектическим чугуном. Его структура при комнатной температуре перлит + цементит (вторичный) + ледебурит (перлит + цементит).

 

 

 

Рис.1 Диаграмма железо – цементит

 

   Требуется произвести поверхностное упрочнение изделий из стали

15. Назначьте вид обработки,  опишите технологию, происходящие  в стали превращения, структуру  и свойства поверхности и сердцевины изделия.

Для получения  необходимого комплекса эксплуатационных свойств (высокая износостойкость  поверхности при достаточно высокой усталостно изгибочной прочности) сталь 15 подвергают цементации, закалке и последующему низкому отпуску. Цементация повышает не только поверхностную твердость, но и прочность детали. Цементацией стали называется процесс диффузионного насыщения поверхности стальных изделий углеродом при нагревании в науглероживающей среде. Назначение цементации и последующей термической обработки – придать поверхностному слою высокую твердость и износостойкость. Эти свойства достигаются обогащением поверхностного слоя стали углеродом доэвтектоидной, эвтектоидной или заэвтектоидной концентрации и последующей термической обработкой, сообщающей поверхностному слою стальных изделий структуру мартенсита или мартенсита с карбидами и небольшим количеством остаточного аустенита.

Термическая обработка  заключается в газовой цементации при температуре 920 – 950ºС. Структура слоя при температуре насыщения – аустенит, после медленного охлаждения в атмосфере агрегата перлит+цементит. Структура сердцевины при температуре насыщения – аустенит, после медленного охлаждения – феррит + перлит.

Для гарантированного получения мелкоигольчатого мартенсита детали после цементации охлаждают  до температуры ниже температуры 600ºС, а затем нагревают под закалку до температуры 800 – 820ºС. Температуру нагрева под закалку выбирают для цементованного слоя. Температура AC3 для данной стали составляет 850ºС.  Закалку для стали 15 производят в воде.

Охлаждение в  воде заготовок обеспечивает скорость охлаждения цементованного слоя выше критической. Структура поверхностного слоя после закалки – мартенсит, структура сердцевины зависит от размеров детали. Для небольших изделий получаем сквозную прокаливаемость. Структура мартенсит по всему сечению. С увеличением размеров изделия от поверхности к сердцевине получаем мартенсит   троостит   сорбит   перлит + феррит. Низкий отпуск проводим при температуре 180 – 200ºС. Более высокие температуры применять не следует, так как это приводит к снижению твердости, статической и усталостной прочности, износостойкости цементовано-закаленных изделий. Охлаждение после отпуска на воздухе. Структура поверхностного слоя – отпущенный мартенсит.

 С увеличением  размеров изделия от поверхности  к сердцевине получаем отпущенный  мартенсит   троостит   сорбит   перлит + феррит.

Твердость поверхности готового изделия 56 – 61 HRC.

Механические  свойства в сердцевине готового изделия  σТ = 370 МПа; σВ = 550 МПа; δ >18%; ψ > 45%.

 

    Используя диаграмму состояния «железо – цементит», определите температуру полного и неполного отжига и нормализации для стали 40. Охарактеризуйте эти режимы термической обработки и опишите изменение структуры и свойств стали в процессе каждого вида обработки.

Полный отжиг заключается в нагреве доэвтектоидной стали на 30-50°С выше температуры, соответствующей точке Ас3 (для стали 40 Ас3 = 790°С), выдержке при этой температуре для полного прогрева и завершения фазовых превращений в объеме металла и последующем медленном охлаждении.

При медленном  охлаждении стали приближаются к фазовому и структурному равновесию. Структура после отжига – феррит + перлит. После отжига сталь имеет низкую твердость и прочность.

Основные цели отжига: перекристаллизация стали (измельчение  зерна), снятие внутренних напряжений, снижение твердости и улучшение  обрабатываемости.

Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (немного выше точки А(для стали 40 А= 730°С)). Неполный отжиг доэвтектоидных сталей применяют для улучшения обрабатываемости резанием. При неполном отжиге происходит частичная перекристаллизация стали – вследствие перехода перлита в аустенит. Избыточный феррит лишь частично превращается в аустенит. Структура после отжига – феррит + перлит.

Нормализация заключается в нагреве доэвтектоидной стали до температуры, превышающей точку Ас3 на 40-50 °С, в непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе. Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье, прокатке, ковке или штамповке. Нормализацию широко применяют для улучшения свойств стальных отливок, вместо закалки и отпуска.

Информация о работе Древнерусское государство и Московская Русь