Деформация ир разрушение металлов

Автор: Пользователь скрыл имя, 30 Ноября 2011 в 19:48, курсовая работа

Описание работы

Материаловедением называют науку, изучающую взаимосвязь между составом, строением и свойствами материалов, закономерности их изменения под воздействием внешних факторов: тепловых, химических, механических, электромагнитных и радиоактивных.
Металл (название происходит от лат. metallum — шахта) — группа элементов, обладающая характерными металлическими свойствами, такими как высокая тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и др.

Содержание

Вступление.
I. Деформация материалов………………………………………………………….3
1.1. Понятие про деформацию материалов и ее показатели………………….3
1.2. Классификация и виды деформаций……………………………………….5
1.3. Механизм проявления деформации………………………………………10
II.Разрушение материалов………………………………………………………….12
2.1. Современные представления про теорию разрушения материалов……12
2.2. Факторы, которые влияют на деформацию материалов………………..14
2.3. Взаимосвязь деформаций с крепостью материалов……………………..17
III. Особенности деформаций и разрушения металлов…………………………..19
3.1.Упругопластические деформации металлов……………………………….19
3.2.Особенности разрушения металлов……………………………………..…22
3.3.Деформация металлов и их износ…………………………………….…….24
Выводы.
Литература.

Работа содержит 1 файл

Курсовая Деформация и разр.металлов.doc

— 235.50 Кб (Скачать)

   Под влиянием нагрузки в поперечных сечениях бруса возникают напряжения растяжения и сжатия, величина которых зависит от величины изгибающего момента, модуля упругости материала, места расположения и удаления от нейтральной линии, а также от радиуса кривизны. Деформация в любом слое, отстоящем от нейтрального на расстоянии (L), прямо пропорциональна этому расстоянию и обратно пропорциональна радиусу кривизны нейтрального слоя:

                                     ±Е= L/r;

где  Е – растяжение в выпуклой части и сжатие вогнутой;          L – расстояние от нейтральной линии;

 r – радиус кривизны;

  При достаточно большой толщине слоя L и малом радиусе кривизны r напряжения могут быть выше предела прочности и материал разрушится. Согласно закону Гука можно записать ± ав = E*L/r/. Напряжения, возникающие и материале, выражаются отношением момента изгиба к моменту сопротивления W: аизг = Мизг/ Wизг.

   Важно установить, насколько полно материал восстанавливает свое первоначальное положение после воздействия нагрузки, не превышающей предела текучести.

    деформация при изгибе.

 

  Деформация сдвига. Проявляются в местах заклепочных и других соединений деталей, когда две равные силы действуют в противоположном направлении и лежат в двух близких поперечных сечениях. Деформация сдвига определяется величиной угла т. Если сдвиг частиц тела происходит в одной плоскости, то такая деформация относится к срезу  и является частным случаем деформации сдвига. Деформация сдвига связана частично с деформациями кручения и изгиба и, как правило, предшествует срезу. Величина, на которую одно сечение сместилось относительно соседнего, называется абсолютным сдвигом.

Деформация сдвига.

   Деформация при кручении. Они возможны, например, при ввинчивании винта. Если к стержню, один конец которого закреплен неподвижно, приложить силу, перпендикулярной с оси стержня, то стержень будет испытывать деформацию при кручении. По мере удаления точки от центра напряжения возрастают. [1].

1.3.Механизм проявления  деформаций.

   Деформации  могут проявляться по-разному, это зависит как от самого материала так и от конструкции. Можно рассмотреть несколько примеров проявления деформации материалов.

   Например, для горных пород это:

  -набухание и увеличение объема горных пород, как результат упругих деформаций;

-вытекание, как результат ползучести и вязкопластических деформаций;

 -образование и распространение глубоких пространственных трещин.

   Например, если это какая-то конструкция,  то тут присущи такие деформации  как:

·  усадка;

·  изменение относительной влажности воздуха;

·  химические взаимодействия, происходящие в бетоне конструкций;

·  колебания температуры окружающей среды;

·  явление ползучести.

   Большинство строительных материалов, в том числе и бетон, имеют сильно развитую и достаточно открытую капиллярно-пористую структуру, благодаря чему могут поглощать влагу из окружающей среды (гигроскопическое увлажнение) либо впитывать (сорбировать) воду при непосредственном соприкосновении с ней. Изменение содержания воды в материале приводит к изменению объема, т.е. к объемным деформациям: при высыхании элемента происходит испарение воды и уменьшение объема, при увлажнении - наоборот.

   Под  ползучестью  конструкций понимают ее способность деформироваться во времени при длительном действии постоянной нагрузки, в том числе и от собственного веса. Физическая природа явления ползучести недостаточно изучена, но считают , что пластические деформации ползучести обуславливаются пластическими свойствами камня . Деформации ползучести наиболее заметно развиваются в начальный период после приложения нагрузки и постепенно затухают. Например, у бетонов наблюдаются в возрасте 5-6 и более лет.

Полная деформация ползучести может значительно превосходить деформации, получаемые бетоном в  момент нагружения, иногда превышая их вдвое [2]. 
 
 
 
 
 
 
 
 
 

  II.  Разрушение материалов.

    1. Современные представления про теорию разрушения материалов.

    Для различных классов материалов характерны те или иные типы структурных образований, определяющие особенности их деформирования и разрушения. Наряду с физическим исследованием микроструктуры и микроразрушения материалов проводят анализ явления разрушения на основе некоторых моделей, отражающих наиболее существенные стороны этого явления. В настоящее время еще рано говорить о возможностях построения какой-то общей теории разрушения, более известным представляется развитие частных теорий, более или менее хорошо описывающих поведение некоторых классов материалов в определенных условиях.

       Разрушение твердого тела почти  всегда происходит вследствие развития в нем некоторых поверхностей разрыва смещений. При этом, если реализуется разрыв нормального к поверхности смещения, то говорят о трещине нормального разрыва (отрыва) или просто трещине; если же реализуется разрыв касательного к поверхности смещения, то говорят о трещине сдвига или дислокации. Для роста трещин характерно преимущественное развитие одной наиболее опасной трещины (однако есть исключения, например рост трещин в условиях сжатия, близкого к всестороннему), способность ее к быстрому неустойчивому росту, обычно вызывающему разделение тела на части.

       Впрочем, разрушения микронеоднородных тел, прочность не зависит от величины начальной трещины и определяется характерными параметрами структуры тела, например величиной зерна (на это обстоятельство обратил в 1939 г. внимание Г. Нейбер; позже Г. П. Черепанов, 1967). 

   Исторически теория дислокаций и теория трещин сложились отдельно; различие этих теорий объясняется тем обстоятельством, что в теории дислокаций рассматривают  разрывы смещений, а в теории трещин на поверхности разрыва обычно задают силовые условия. Для решения вопроса о развитии трещины это так же важно, как, например, выбор правильного критерия разрушения для гладкого образца.  Наиболее просто формулируется условие локального разрушения в теории так называемых квазихрупких трещин, когда наибольший размер области пластических деформаций в рассматриваемой точке контура трещины мал по сравнению с расстоянием этой точки до ближайшей границы тела. Простейший вариант этого условия на основе физических идей А. А. Гриффита и Г. Ней-бера был предложен в 1957 г. Он заключается в том, что коэффициент при особенности напряжений в рассматриваемой точке в момент локального разрушения (и продвижения трещины в этой точке) считается равным некоторой постоянной материала; при этом напряжения вычисляются в идеальной упругости тела.

   Были предложены различные модели детального механизма разрушения в конце квазихрупкой трещины. Модель Леонова — Панасюка (1959), предложенная независимо от зарубежных авторов, наиболее проста и универсальна. Согласно этой модели принимается, что на продолжении трещины имеется область ослабленных связей; толщина этой области в рамках  теории малых деформаций считается равной нулю. Кроме того, предполагается, что противоположные берега этой области притягиваются один к другому некоторым напряжением, представляющим собой константу материала, а в начале этой области, совпадающей с концом трещины, скачок нормального смещения в момент разрушения становится равным некоторой другой константе материала. Этот критерий может быть применен также к трещинам в упруго-пластических телах.

   Подход к описанию развития трещин в произвольных сплошных средах был предложен Г. П. Черепановым (1967). Он основан на энергетической концепции и на представлении о сверхтонкой структуре конца трещины, размер которой мал сравнительно с размером пластической области вблизи вершины трещины. 
Теория предельного равновесия и теория хрупких трещин составляют основу современной механики разрушения. На основе этих теорий было решено много конкретных проблем большого практического значения. Эти теории дают идеализированное описание свойств пластичности и хрупкости, которые присущи в разной мере всем твердым телам.
 

2.2. Факторы, которые влияют на разрушение материалов.

   Существуют такие факторы разрушения  материалов: химическое или электрохимическое  взаимодействие материалов с коррозионной средой, атмосферная коррозия, подводная коррозия, подземная и промышленная коррозии; трение; старение; трещины; нагрузки.

   Разрушение материалов вследствие химического или электрохимического взаимодействия их с коррозионной средой. В системе международной стандартизации это понятие несколько шире: физико-химическое взаимодействие между металлом и средой, в результате которого изменяются свойства металла или материала, и часто происходит ухудшение функциональных характеристик материала, среды. В результате коррозии образуются новые вещества, включающие окислы и соли коррозирующего материала, это – продукты коррозии. Видимые продукты атмосферной коррозии, состоящие в основном из оксидов железа, называют ржавчиной, продукты газовой коррозии при высоких температурах – окалиной.

   К химической коррозии относятся процессы, протекающие при химическом взаимодействии между материалом и агрессивной средой, не сопровождающиеся возникновением электрического тока. Характерной особенностью процесса химической коррозии является образование продуктов коррозии в месте взаимодействия материала с агрессивной средой. По условиям протекания здесь можно выделить: газовую коррозию (коррозия металлов, вызываемая действием паров и газов при высоких температурах) и коррозию в неэлектролитах (коррозия металлов в жидкостях, непроводящих электрический ток).

    К электрохимической коррозии, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах. При электрохимической коррозии процесс растворения металлов сопровождается появлением электрического тока, как в материале, так и в агрессивной среде. При этом электрический ток возникает вследствие процессов коррозии. При электрохимической коррозии одновременно происходит два процесса: окислительный (растворение металла на одном участке) и восстановительный (например, восстановление кислорода). Эти два участка называют анодом и катодом и соответственно различают анодный и катодный процесс.

   В зависимости от условий протекания процессов и характера разрушения металла различают следующие виды коррозии:

- атмосферная коррозия – коррозия в условиях влажной воздушной среды. Это наиболее распространенный вид коррозии.

-подземная коррозия – разрушение металла под действием почвы или грунта.

-подводная коррозия – коррозия под действием пресной, морской, минеральной и другой воды.

-промышленная коррозия – коррозия материалов при получении, переработке промышленно важных сред.

   Напряжения могут вызывать усиленное коррозионное разрушение обычно местного характера. Не менее опасные разрушения могут иметь место при одновременном воздействии агрессивной среды и знакопеременных нагрузок.

Кроме того, выделяют коррозию при трении – разрушение материала при одновременном воздействии агрессивной среды и трения. Серьезные поражения металлов и материалов наблюдаются при коррозионной кавитации – разрушении при ударном воздействии коррозионной среды.

   Старение – совокупность физических и химических процессов, протекающих в материале, приводящих к изменению его состава и структуры под действием влияющих факторов. Снижение химической стойкости и физико-механических показателей полимерных материалов в результате старения заключается в деструкции вещества. Под деструкцией понимают процессы, приводящие к уменьшению длины цепей или размеров макромолекул. Процессы деструкции протекают под воздействием тепла, света, излучений, кислорода, озона, механических напряжений. За меру химической стойкости неметаллических материалов, применяемых в качестве защитных покрытий, часто принимают величину их набухания в рабочей среде.

   Трещины. Первые работы в сфере теории разрушения появились в 1921 году, разработал английский инженер Гриффитс. По Гриффитсу, страгивание трещины происходит тогда, когда приращение энергии деформации при прорастании трещины достигает энергии, идущей на образование новой свободной поверхности.

   Переменность нагрузки. Действие многократно изменяющейся во времени нагрузки может привести к внезапному разрушению материала, носящему хрупкий характер (усталостное разрушение). Окончательному разрушению предшествует образование трещины усталости. Излом имеет две зоны: гладкую (зона развития трещин) и грубозернистую (зона окончательного излома).В ряде случаев на материалы действуют нагрузки, сравнительно медленно изменяющиеся во времени. Если эти нагрузки повторяются многократно, то возможно разрушение конструкции, носящее усталостный характер. Подобные нагрузки называются повторно статическими. Способность материала сопротивляться разрушению при повторно статических нагрузках называется статической выносливостью. Исследования показывают, что при повторно статических нагрузках разрушение наступает при существенно меньшем числе циклов, чем при переменных нагрузках, повторяющихся с большой частотой. [4] 

Информация о работе Деформация ир разрушение металлов