Фрактальная логика

Автор: Пользователь скрыл имя, 09 Сентября 2012 в 10:58, реферат

Описание работы

Рассмотрим построение триадной кривой, которую впервые исследовал в 1904 году шведский математик Хельге фон Кох (рисунок 1.1.1).
Возьмем прямолинейный отрезок длины 1. Назовем его затравкой. Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть, и заменим ее ломаной из двух звеньев длиной 1/3 таким образом, чтобы средняя часть оказалась основанием равностороннего треугольника со стороной 1/3. Мы получили ломаную, состоящую из четырех звеньев с общей длиной 4/3 – так называемое первое поколение.
Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена аналогично отбросить и заменить среднюю часть.
Соответственно, длина второго поколения будет равна 16/9, третьего – 64/27 и так далее.
Если продолжить этот процесс до бесконечности, то в результате получится триадная кривая Коха.

Содержание

Глава 1 Исторические предпосылки фрактальной логики
1.1 Математические “монстры” - примеры и проблемы
1.2 Логические парадоксы – примеры и проблемы
1.3 “Монстры” и парадоксы – неслучайные совпадения.
1.4 Исторический очерк фрактальной геометрии
1.5 Принцип дополнительности фрактальной геометрии
1.6 Парадоксы как фракталы. Фрактальная логика: обратная связь как модель “монстров” и парадоксов
1.7 Парадокс лжеца: логический формализм через понятие обратной связи.
Глава 2 Логические ряды и логические фракталы
2.1 Определение логического ряда. Виды рядов.
2.2 Процедуры генерации логических рядов с помощью обратных связей. Прямая и обратная задача генерации логического ряда.
2.3 Операции с логическими рядами
2.4 Кортежи, масштабы и инварианты логических рядов. Самоподобие. Определение регулярного логического фрактала.
2.5 Формализм масштабного преобразования. Определение преобразованных логических фракталов.
2.6 Монады. Монадология.
2.7 Тезис о построении логического фрактала через два типа обратных связей
2.8 Количественные характеристики логических фракталов
Послесловие: проблемы и задачи фрактальной логики

Работа содержит 1 файл

Фрактальная логика.doc

— 2.09 Мб (Скачать)


 

 

Тарасенко В.

 

 

 

 

 

 

 

 

Фрактальная логика

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Линия   состоит   из  множества  точек;  плоскость  -  из бесконечного  множества  линий;  книга   -   из   бесконечного множества  плоскостей;  сверхкнига - из бесконечного множества книг. Нет, решительно не так. Не таким more  geometrico  должен начинаться   рассказ.   Сейчас   любой  вымысел  сопровождается заверениями в его истинности, но мой рассказ и в самом деле  - чистая правда.

 

Х.Л. Борхес Книга песка


Содержание

 

 

 
Глава 1 Исторические предпосылки фрактальной логики

 

1.1 Математические “монстры” - примеры и проблемы

1.2 Логические парадоксы – примеры и проблемы

1.3 “Монстры” и парадоксы – неслучайные совпадения.

1.4 Исторический очерк фрактальной геометрии

1.5 Принцип дополнительности фрактальной геометрии

1.6 Парадоксы как фракталы. Фрактальная логика: обратная связь как модель “монстров” и парадоксов

1.7 Парадокс лжеца: логический формализм через понятие обратной связи.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Глава 2 Логические ряды и логические фракталы

 

2.1 Определение логического ряда. Виды рядов.

2.2 Процедуры генерации логических рядов с помощью обратных связей. Прямая и обратная задача генерации логического ряда.

2.3 Операции с логическими рядами

2.4 Кортежи, масштабы и инварианты логических рядов. Самоподобие. Определение регулярного логического фрактала.

2.5 Формализм масштабного преобразования. Определение преобразованных логических фракталов.

2.6 Монады. Монадология.

2.7 Тезис о построении логического фрактала через два типа обратных связей

2.8 Количественные характеристики логических фракталов

 

 

 

Послесловие: проблемы и задачи фрактальной логики

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1 Исторические предпосылки фрактальной логики

 

1.1   Математические “монстры” - примеры и проблемы

Рассмотрим построение триадной кривой, которую впервые исследовал в 1904 году шведский математик Хельге фон Кох (рисунок 1.1.1).

Возьмем прямолинейный отрезок длины 1. Назовем его затравкой. Разобьем затравку на три равные части длиной в 1/3, отбросим среднюю часть, и заменим ее ломаной из двух звеньев длиной 1/3 таким образом, чтобы средняя часть оказалась основанием равностороннего треугольника со стороной 1/3. Мы получили ломаную, состоящую из четырех звеньев с общей длиной 4/3 – так называемое первое поколение.

Для того чтобы перейти к следующему поколению кривой Коха, надо у каждого звена аналогично отбросить и заменить  среднюю часть.

Соответственно, длина второго поколения будет равна 16/9, третьего – 64/27 и так далее.

Если продолжить этот процесс до бесконечности,  то в результате получится триадная  кривая Коха.

Рассмотрим свойства этой кривой.

Во-первых, эта кривая не имеет длины – как мы убедились, с увеличением числа поколений ее длина стремится к бесконечности.

Во-вторых, к этой кривой невозможно построить касательную – каждая  ее точка является точкой перегиба (особой точкой или сингулярностью), в которой производная не существует - эта кривая не гладкая.

Длина и гладкость – фундаментальные свойства кривых, которые изучаются как евклидовой геометрией, так и неевклидовыми геометриями типа геометрий Лобачевского или Римана. На основании этих свойств развиваются методы анализа и преобразования геометрических фигур.

К триадной  кривой Коха традиционные методы геометрического анализа оказались неприменимы. Поэтому, кривая Коха оказалась чудовищем – “монстром” среди гладких обитателей традиционных геометрий.

Одним из первых, кто досконально начал изучать “монстров” был Карл Вейерштрасс. Вслед за Бернардом Больцано, опубликовавшем в 1851 году книгу "Парадоксы бесконечности", он привел пример функции, графиком которой была негладкая кривая, обратив внимание на то, что понятие “непрерывная функция” и “непрерывная функция имеющая в каждой точке производную” не являются тождественными.

18 июля 1872 года в докладе Берлинской академии наук Вейерштрасс доложил пример негладкой непрерывной функции. Данная функция задается рядом:

W(x) = аn cos (bnx),

a<1, b>1, ab>1.

График этой функции (рис. 1.1.2) самоподобен,  то есть, инвариантен (неизменен) при определенных преобразованиях координат (растяжения по абциссам в b раз и в 1/a раз по ординатам). В малом масштабе дублируются детали крупного масштаба, в результате этого можно говорить, что это функция никогда не сводится на малом отрезке к линии - она непрерывна, но не имеет дифференциала и производной. Функция имеет очень сложную “пилообразную” структуру - причем на “пилы” большего масштаба до бесконечности накладываются “пилы” меньшего.

 

Рис 1.1.2 Функция Вейерштрасса при a=0,5 b=4 на различных масштабах: иллюстрация самоподобия[1]

Пример Вейерштрасса получил широкий отклик и  потряс математиков. “Как интуиция может обмануть нас до такой степени?” - восклицал Пуанкаре. Бурбаки так описывает период появления “монстров”:

“...примеры кривых, не имеющих касательных, построенные Больцано и Вейерштрассом, положили начало патологическим явлениям в математике. В течение целого века мы видели столько чудовищ такого рода, что почувствовали некоторое пресыщение, и чтобы нас действительно удивить, надо было бы показать нам нагромождение самых нелепых уродств. У большинства математиков XIX в. чувство отвращения сменилось состоянием растерянности... надо было винить грубый и несовершенный характер нашей геометрической интуиции, и вполне понятно, что после этого она с полным правом была дискредитирована как средство доказательства”.

“Монстры” составили своеобразную альтернативу объектам и методам евклидовой геометрии. До конца XX века эта альтернатива носила скорее негативный, чем позитивный оттенок. “Монстры” не были другой геометрией, это были скорее “темные” и “запретные” зоны геометрического анализа в которых традиционные методы не работали.

 

 

 

 

1.2 Логические парадоксы – примеры и проблемы

 

"Из них же самих один стихотворец сказал: "Критяне всегда лжецы, злые звери, утробы ленивые". Свидетельство это справедливо".

Послание к Титу святого апостола Павла. Глава 1. Стих 12-13.

 

Как известно, логика оперирует с высказываниями – записанными с помощью знаков суждениями естественного или искусственного языка, которые имеют значения – сформулированные для данного высказывания логические содержания. Набор значений конечен. В случае классической двузначной логики этот набор -  истина и ложь. Одно высказывание не может одновременно иметь несколько значений.

Высказывания можно формализовать – то есть записать на формальном языке и сформулировать логику высказываний – набор процедур и операций, которые преобразуют одни высказывания в другие или изменяют значения высказываний.

На этом предположении строится традиционная формальная логика, устанавливающая процедуры и операции над высказываниями.

Рассмотрим суждение естественного языка “Я лгу”. Преобразуем его в высказывание логики. Для этого проанализируем его содержание и интерпретируем логические значения.

Если мы предположим, что содержание высказывания “Я лгу” истинно, то его содержание указывает на то, что это высказывание ложно, следовательно, это высказывание является ложным, и его значение – ложь.

Если мы предположим, что содержание высказывания “Я лгу” ложно, то суждение “Я лгу” неверно. Следовательно, я говорю истину, и это высказывание является истинным. Его значение – истина.

Таким образом, одно и то же высказывание обладает двумя значениями одновременно.

Высказывание “Я лгу” – широко известный  с древних времен пример семантического парадокса, иллюстрирующего противоречивость интерпретаций высказываний.

Одним из первых исследователей парадоксов был Зенон Элейский, занявший место в  истории философии благодаря рассмотрению четырех парадоксов движения.

   

Рис.1.2.1 Зенон Элейский (430-495 до н.э.) и иллюстрация знаментитого парадокса "Ахилл и черепаха". Всего Зенонм было придумано более 40 апорий, направленных против бесконечности и движения.

 

В своих парадоксах Зенон пытался показать, что из определенного положения можно получить суждения, противоречащие друг другу. Следовательно, необходимо подвергнуть критике это положение.

Анализ парадоксов – любимая тема логических исследований XIX-XX веков, из которой выросло множество интересных работ по философии, основаниям математики, логическим теориям, искусственному интеллекту.

Парадоксы оказали колоссальное воздействие на литературу и беллетристику ХIХ-ХХ веков. Здесь можно упомянуть имена Л. Кэррола, Х.Л. Борхеса, Б. Касареса, Х. Кортасара, У. Эко, М. Павича.

Самой яркой работой на эту тему, на мой взгляд, является книга Дагласа Хофштадтера "Гёдель, Ешер, Бах"[2]. Главные герои книги – персонажи Зенона – Ахилл и Черепаха, постоянно попадают в бесконечные и парадоксальные ситуации. Между их диалогами обсуждаются проблемы логики, геометрии, биологии, нейрофизиологии, музыки и дзен-буддизма.

Кроме семантических парадоксов популярной темой исследований являлся анализ теоретико-множественных парадоксов, самым известным из которых был парадокс Рассела. Этот парадокс фиксировал противоречивость фундаментальной категории логики – категории множества.

 

 

 

         

Рис. 1.2.2 Бертран Артур Уильям Рассел (1872-1970). Портрет и шарж с формулировкой знаменитого парадокса. Рассел  - автор огромного количества книг по философии, логике, основаниям математики. Нобелевскую премию получил по литературе.

 

Так же как и “монстры”, поражающие математиков, парадоксы поражали  логиков. Они  не вписывались в традиционные процедуры логического анализа и наводили на мысль о том, что в основаниях логики не всё благополучно.

 

1.3 “Монстры” и парадоксы – неслучайные совпадения.

Сопоставив историю исследований геометрических “монстров” и логических парадоксов,  можно увидеть ряд удивительных совпадений.

Совпадения исторические.

Если начинать отсчет с мифических времен, то первым известным нам местом  встречи монстров и парадоксов будет остров Крит. 

"Все критяне лжецы" – сказал один критянин" – формулировка древнейшего парадокса.

Лжецы критяне, еще и потому, что якобы у них был выстроен лабиринт – топологический аналог геометрического "монстра" и дом мифического монстра Минотавра – чудовища с головой быка и туловищем человека. Минотавр живет в архитектурном «монстре». Первооткрывателем (или первостроителем) этого геометрического – архитектурного "монстра" следует признать Дедала – строителя лабиринта.

Случайно или нет совпадение места лабиринта и места рождения парадокса лжеца? Сказать сложно.  Лично меня это совпадение удивляет и поражает. Когда совмещаешь  эти вещи, то охватывает ощущение резонанса, соприкосновения с какой-то тайной зашифрованной в этом совпадении. Может быть, тайной рождения европейской культуры и цивилизации, европейского "линейного" мышления из "нелинейного" мифа. Я вернусь к этой теме в конце книги.

                              

 

Мысленно перенесемся в другую эпоху и возьмем в качестве отправной точки 1903 год. В этом году Бертран Рассел пишет письмо  Готлобу Фреге, впервые описывающее его знаменитый парадокс. Именно в этом году шведский математик Хельге фон Кох строит свои кривые и публикует их в следующем – 1904 году.

За тринадцать лет до этого Давид Гильберт в Кенигсберге исследует и обращает внимание научного сообщества на очередного “монстра” - кривую, построенную в 80 годах XIX века итальянским математиком и логиком  Джузеппе Пеано. Приблизительно в это же время – в начале 90 годов, Георг Кантор исследует парадоксы в определении понятия “мощность множества”.

Информация о работе Фрактальная логика