История Ethernet

Автор: Пользователь скрыл имя, 18 Июня 2012 в 07:21, курсовая работа

Описание работы

Днем рождения Ethernet можно считать 22 мая 1973 г., когда Роберт Меткалф (Robert Metcalfe) и Дэвид Боггс (David Boggs) опубликовали докладную записку, в которой описывалась экспериментальная сеть, построенная ими в Исследовательском центре фирмы Xerox в Пало-Альто.

Содержание

История Ethernet…………………………………………………………….
Ethernet 10Base5…………………….
Основные преимущества 10Base5:
10Base2
10Base-T
10Broad36
1Base5
Спецификации Gigabit Ethernet:
Модель OSI
Сегментация сети
Коммутация пакетов
Общая среда
Сети Ethernet и Fast Ethernet

Работа содержит 1 файл

Курсовая (Бизнес-план предприятия) Камшилов К-325.docx

— 54.88 Кб (Скачать)

 

Длина сегмента сети не более 1800 метров, а максимальное расстояние между любыми двумя станциями в сети - 3600 м. Скорость передачи 10 Mбит/с. Подключение станций производится с помощью трансиверов, подсоединяемых к кабелю. Длина AUI кабеля, соединяющего трансивер со станцией, не более 50 м. Сегменты сети 10Broad36 должны терминироваться т.н. "оконечным головным" устройством, которое располагается на конце единичного или в корне множественных сегментов. Соединение станций в сети осуществляется одним или двумя кабелями. В первом случае для приема и передачи сигналов выделяются различные каналы частот. Передача станции поступает только на "оконечное головное" устройство, которое преобразует частоту, после чего передача принимается другими станциями, подключенными к сети. Во втором случае один из кабелей используется для приема, второй - для передачи. Сигнал достигает "оконечного головного" устройства, после чего проходит на другой кабель без изменения частоты и принимается любой станцией в сети. Полнодуплексный режим не поддерживается. Технология 10Broad36 не получила широкого распространения, вероятно, из-за сложности реализации и высокой стоимости.

 

1Base5

Эта технология соответствует стандарту IEEE 802.3e, утвержденному  в 1987 году. Также известна под именем StarLAN. Топология - "звезда", ограничение на длину сегмента - 400 м. Работает с витой парой категории 2 и выше. Скорость передачи - 1 Мбит/с. Упоминается, в основном, как часть не менее экзотической UltraNet или в порядке перечисления - "и такое, мол, бывает :-)". В настоящее время шансов на применение не имеет из-за малой пропускной способности.

 

Быстрее... еще  быстрее...

После того, как стандарт 10Base-T стал преобладающим, определив среду передачи строящихся сетей - медную витую пару, развитие технологии пошло в направлении увеличения скорости передачи данных. Первой из технологий 100 Мбит/с для локальных сетей, была FDDI. При всех достоинствах эта технология была дорогостоящей. Для удешевления путем применения кабелей на медной витой паре фирмой Crescendo была разработана и запатентована схема кодирования и скремблирования, допускающая полнодуплексную передачу "точка-точка" по UTP для стандарта CDDI. Позднее именно эти спецификации легли в основу стандарта 100Base-T, преобладающего сегодня во вновь создаваемых сетях. 100Base-T соответствует стандарту IEEE 802.3u, утвержденному в 1995 году.

 

100Base-T имеет  2 разновидности реализации - 100Base-TX и 100Base-T4. Различаются они количеством  используемых пар и категорией  применяемого кабеля. 100Base-TX использует 2 пары кабеля UTP категории 5, 100Base-T4 использует 4 пары кабеля категории 3 или выше. Наибольшее распространение получил стандарт 100Base-TX, 100Base-T4 применяется в основном в старых сетях, построенных на UTP класса 3. Максимально допустимое расстояние от станции до концентратора 100 м, как и в 10Base-T , но в связи с изменением скорости распространения сигналов диаметр сети стандарта 100Base-T ограничен 200 м.

 

100 Base-FX - реализация Fast Ethernet с использованием в качестве среды передачи многомодового оптоволоконного кабеля. Ограничение длины сегмента - 412 метров при использовании полудуплексного режима и 2 км - при использовании полнодуплексного.

 

...быстро, как  только возможно

Прогресс - штука  безостановочная. 100 Мбит/с - немалая скорость передачи данных, но для магистральных каналов ее может не хватить. В 1996 г. начались работы по стандартизации сетей Ethernet со скоростью передачи данных 1000 Мбит/с, которые называют Gigabit Ethernet. Был образован Gigabit Ethernet Alliance, в который вошли 11 компаний: 3Com, Bay Networks, Cisco, Compaq, Granite Systems, Intel, LSI Logic, Packet Engines, Sun, UB Networks и VLSI Technology. К началу 1998 года в Альянс входило уже более 100 компаний. В июне 1998 г. принимается стандарт IEEE 802.3z, использующий одномодовые и многомодовые оптоволоконные кабели, а также STP категории 5 на короткие расстояния (до 25 м). Столь малое допустимое расстояние в случае применения UTP обуславливало сомнительную возможность практического применения такого варианта. Положение изменилось с принятием в июне 1999 г. стандарта IEEE 802.3ab для передачи 1000 Мбит/с по неэкранированной витой паре на расстояния до 100 м.

 

Спецификации  Gigabit Ethernet:

 

1000Base-LX: трансиверы  на длинноволновом лазере, одномодовый и многомодовый оптоволоконный кабель, ограничения длины сегмента 550 м для многомодового и 3 км для одномодового кабеля. Некоторые фирмы предлагают оборудование, позволяющее строить сегменты с применением одномодового кабеля гораздо большей длины - десятки километров.

 

1000Base-SX: трансиверы  на коротковолновом лазере и  многомодовый оптический кабель. Ограничения длины сегмента 300 м для кабеля с диаметром оптического проводника 62.5 мкм и 550 м для кабеля с диаметром проводника 50 мкм.

 

1000Base-CX: экранированная витая пару. Ограничение длины сегмента - 25 м.

 

1000Base-T: неэкранированная витая пару. Ограничение длины сегмента - 100 м.

 

Поскольку стандарт на оптоволоконный Gigabit Ethernet вышел на год раньше, на рынке преобладает оборудование, рассчитанное на работу с оптическим физическим интерфейсом. Применять или не применять Gigabit Ethernet - вопрос, активно обсуждаемый в настоящее время. Сейчас немногие отечественные сети нуждаются в столь высокой пропускной способности. С учетом снижения цен, имеет смысл переходить на Gigabit Ethernet, когда все другие возможности действительно исчерпаны, во всяком случае, в существующих сетях. Но "держать в уме" возможность перехода на Gigabit Ethernet нужно, поэтому приобретение коммутаторов, позволяющих установку модулей с поддержкой этого стандарта представляется разумным.

 

Есть ли предел скорости у технологии Ethernet? В начале 2000 г. 3Com, Cisco Systems, Extreme Networks, Intel, Nortel Networks, Sun Microsystems и Worldwide Packets основали 10 Gigabit Alliance. Задача Альянса - способствовать работе комитета IEEE в разработке стандарта 802.3ae (10 Gigabit Ethernet), который планируется принять весной 2002 г. Рабочая группа IEEE уже опубликовала предварительную информацию об ограничениях на длину сегмента сети с пропускной способностью 10 Гбит/с: до 100 метров для используемого в настоящее время многомодового оптоволоконного кабеля и до 300 метров для нового усовершенствованного многомодового оптоволоконного кабеля. Существует несколько вариантов одномодового оптоволоконного кабеля: до 2 км для сети группы зданий и 10 или 40 км для региональной сети.

 

Модель OSI

При подробном  рассмотрении функционирования сетей  часто упоминается понятие уровней взаимодействия компонентов сети. В качестве "линейки" для определения уровней используется модель OSI (Open System Interconnect - взаимодействие открытых систем), разработанная как описание структуры идеальной сетевой архитектуры. В модели OSI семь уровней взаимодействия для рассмотрения процесса обмена информацией между устройствами в сети. Каждый из уровней сети относительно автономен и рассматривается отдельно. Модель OSI используется для определения функций каждого уровня.

 

1) Физический  уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, требования к среде передачи, физические соединители и другие аналогичные характеристики.

 

2) Канальный  уровень (Data Link) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации, топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации. Обычно этот уровень разбивается на два подуровня: LLC (Logical Link Control) в верхней половине, осуществляющего проверку на ошибки, и MAC (Media Access Control) в нижней половине, отвечающего за физическую адресацию и прием/передачу пакетов на физическом уровне.

 

3) Сетевой  уровень обеспечивает соединение  и выбор маршрута между двумя  конечными системами, подключенными  к разным "подсетям", которые  могут находиться в разных  географических пунктах. Сетевой  уровень отвечает за выбор  оптимального маршрута между  станциями, которые в могут быть разделены множеством соединенных между собой подсетей.

 

4) Транспортный - самый высокий из уровней,  отвечающих за транспортировку данных. На этом уровне обеспечивается надежная транспортировка данных через объединенную сеть. Транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком.

 

5) Сеансовый  уровень устанавливает, управляет  и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к управлением сеансами этот уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового и более высоких уровней.

 

6) Уровень  представления отвечает за то, чтобы информация, посылаемая из  прикладного уровня одной системы,  была читаемой для прикладного  уровня другой системы. При  необходимости представительный  уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. При необходимости трансформации подвергаются не только фактические данные, но и структуры данных, используемые программами. Типичным примером является преобразование окончаний строк UNIX (CR) в MS-DOS формат (CRLF).

 

7) Прикладной  уровень отвечает за выполнение  пользовательских задач. Он идентифицирует  и устанавливает наличие предполагаемых  партнеров для связи, синхронизирует  совместно работающие прикладные  программы, устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации, а также определяет, достаточно ли ресурсов для предполагаемой связи.

 

Детские болезни  Ethernet и борьба с нимиEthernet использует "случайный" метод доступа к сети (CSMA/CD - carrier-sense multiple access/collision detection) - множественный доступ с обнаружением несущей. В нем отсутствует последовательность, в соответствии с которой станции могут получать доступ к среде для осуществления передачи. В этом смысле доступ к среде осуществляется случайным образом. Преимущество метода: алгоритмы случайного доступа реализуются значительно проще по сравнению с алгоритмами детерминированного доступа. Следовательно, аппаратные средства могут быть дешевле. Поэтому Ethernet более распространен по сравнению с другими технологиями для локальных сетей. При загрузке сети уже на уровне 30% становятся ощутимыми задержки при работе станций с сетевыми ресурсами, а дальнейшее увеличение нагрузки вызывает сообщения о недоступности сетевых ресурсов. Причиной этого являются коллизии, возникающие между станциями, начавшими передачу одновременно или почти одновременно. При возникновении коллизии, передаваемые данные не доходят до получателей, а передающим станциям приходится возобновлять передачу. В классическом Ethernet все станции в сети образовывали домен коллизий (collision domain). При этом одновременная передача любой пары станций приводила к возникновению коллизии.

Сегментация сети

Основной  способ борьбы с перегрузкой сегментов  во времена преобладания сетей стандарта 10Base2. Весь сегмент разбивался на части. При этом вопрос передачи информации между сегментами при необходимости решался с помощью маршрутизации. Аппаратные средства особой популярностью не пользовались. Обычно сервер с несколькими сетевыми адаптерами устанавливался приблизительно в центре сети и на нем настраивался программный маршрутизатор. Таким образом, кроме изоляции коллизий в отдельных сегментах, можно было увеличить общий размер сети до 185 + 185 = 370 м.

 

Коммутация  пакетов

Используя топологию "звезда", стандарт 10Base-T на физическом уровне реализует "свернутую" или "коллапсированную" общую шину, поэтому проблема коллизий актуальна и для него. Впервые технология коммутации сегментов Ethernet была предложена фирмой Kalpana в 1990 году. Коммутирующие концентраторы, или просто коммутаторы (switch), позволили каждой станции использовать среду передачи без конкуренции с другими за счет буферизации входящих данных и передаче их станции-получателю только тогда, когда его порт открыт. Коммутация фактически преобразует Ethernet из широковещательной системы с конкурентной борьбой за полосу пропускания в систему адресной передачи данных. При этом пары портов отправитель-адресат динамически образуют независимые виртуальные каналы. Это увеличивает пропускную способность сети по сравнению с применением концентраторов. Довольно популярными являются решения, когда серверы подключаются к более скоростным портам коммутатора, станции - к менее скоростным. В этом случае в идеале каждая станция имеет доступ к серверу с максимальной скоростью, поддерживаемой адаптером.

 

Поскольку ограничения  диаметра сети в классической технологии Ethernet связаны с необходимостью своевременного обнаружения коллизий, применение коммутаторов позволяет преодолеть эти ограничения, разбивая сеть на несколько доменов коллизий.

 

Передача  пакетов от порта-источника в  порт-получатель в коммутаторе происходит либо "на лету" (cut-though), либо с полной буферизацией пакетов (store-and-forward). При использовании передачи "на лету" передача порту-получателю начинается еще до окончания приема пакета с порта-источника, используя адрес получателя из заголовка пакета. Такой способ сокращает задержки передачи при небольшой загрузке сети, однако ему присущи и недостатки - в этом случае невозможна предварительная обработка пакетов, позволяющая отбрасывать плохие пакеты без передачи их получателю. При увеличении загрузки сети задержка при передаче "на лету" практически равняется задержке при передаче с буферизацией, это объясняется тем, что в этом случае выходной порт часто бывает занят приемом другого пакета, поэтому вновь поступивший пакет для данного порта все равно приходится буферизовать.

Информация о работе История Ethernet