Криптология и криптография

Автор: Пользователь скрыл имя, 15 Февраля 2012 в 16:12, реферат

Описание работы

Криптоло́гия — наука, занимающаяся методами шифрования и дешифрования. Криптология состоит из двух частей — криптографии и криптоанализа. Криптография занимается разработкой методов шифрования данных, в то время как криптоанализ занимается оценкой сильных и слабых сторон методов шифрования, а также разработкой методов, позволяющих взламывать криптосистемы.

Работа содержит 1 файл

Криптология.doc

— 284.00 Кб (Скачать)

   Криптология

   Криптоло́гия (от др.-греч. κρυπτός — скрытый и λόγος — слово) — наука, занимающаяся методами шифрования и дешифрования. Криптология состоит из двух частей — криптографии и криптоанализа. Криптография занимается разработкой методов шифрования данных, в то время как криптоанализ занимается оценкой сильных и слабых сторон методов шифрования, а также разработкой методов, позволяющих взламывать криптосистемы.

   Слово «криптология» (англ. cryptology) встречается в английском языке с XVII века, и изначально означало «скрытность в речи»; в современном значении было введено американским учёным Уильямом Фридманом и популяризовано писателем Дэвидом Каном.

   Криптография

   Немецкая криптомашина Lorenz использовалась во время Второй мировой войны для шифрования самых секретных сообщений

   Криптогра́фия (от др.-греч. κρυπτός —скрытый и γράφω — пишу) — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации.

   Изначально  криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма и/или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

   Криптография  не занимается: защитой от обмана, подкупа  или шантажа законных абонентов, кражи ключей и других угроз информации, возникающих в защищенных системах передачи данных.

   Криптография — одна из старейших наук, ее история насчитывает несколько тысяч лет.

   История криптографии насчитывает около 4 тысяч  лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

   Первый  период (приблизительно с 3-го тысячелетия  до н. э.) характеризуется господством моноалфавитных шифров (основной принцип — замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки — с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) — до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

   Роторная  шифровальная машина Энигма, разные модификации которой использовались германскими войсками с конца 1920-х годов до конца Второй мировой войны

   Четвертый период — с середины до 70-х годов XX века — период перехода к математической криптографии. В работе Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам — линейному и дифференциальному криптоанализам. Однако, до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

   Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления — криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается — от разрешения до полного запрета.

   Современная криптография образует отдельное научное направление на стыке математики и информатики — работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества — её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

   Современная криптография

   Для современной криптографии характерно использование открытых алгоритмов шифрования, предполагающих использование  вычислительных средств. Известно более десятка проверенных алгоритмов шифрования, которые при использовании ключа достаточной длины и корректной реализации алгоритма криптографически стойки. Распространенные алгоритмы:

  • симметричные DES, AES, ГОСТ 28147-89, Camellia, Twofish, Blowfish, IDEA, RC4 и др.;
  • асимметричные RSA и Elgamal (Эль-Гамаль);
  • хэш-функций MD4, MD5, MD6, SHA-1, SHA-2, ГОСТ Р 34.11-94.

   Во многих странах приняты национальные стандарты шифрования. В 2001 году в США принят стандарт симметричного шифрования AES на основе алгоритма Rijndael с длиной ключа 128, 192 и 256 бит. Алгоритм AES пришёл на смену прежнему алгоритму DES, который теперь рекомендовано использовать только в режиме Triple DES. В Российской Федерации действует стандарт ГОСТ 28147-89, описывающий алгоритм блочного шифрования с длиной ключа 256 бит, а также алгоритм цифровой подписи ГОСТ Р 34.10-2001. 

   Криптоанализ (от др.-греч. κρυπτός — скрытый и анализ) — наука о методах получения исходного значения зашифрованной информации, не имея доступа к секретной информации (ключу), необходимой для этого. В большинстве случаев под этим подразумевается нахождение ключа. В нетехнических терминах, криптоанализ есть взлом шифра (кода). Термин был введён американским криптографом Уильямом Ф. Фридманом в 1920 году.

   Под термином «криптоанализ» также понимается попытка найти уязвимость в криптографическом  алгоритме или протоколе. Хотя основная цель осталась неизменной с течением времени, методы криптоанализа претерпели значительные изменения, эволюционировав от использования лишь ручки и бумаги до широкого применения вычислительных мощностей специализированных криптоаналитических компьютеров в наши дни. Если раньше криптоаналитиками были большей частью лингвисты, то в наше время это удел «чистых» математиков.

   Результаты  криптоанализа конкретного шифра  называют криптографической атакой на этот шифр. Успешную криптографическую атаку, дискредитирующую атакуемый шифр, называют взломом или вскрытием.

   Криптоанализ  эволюционировал вместе с развитием криптографии: новые, более совершенные шифры приходили на смену уже взломанным системам кодирования только для того, чтобы криптоаналитики изобрели более изощренные методы взлома систем шифрования. Понятия криптографии и криптоанализа неразрывно связаны друг с другом: для того, чтобы создать устойчивую ко взлому систему, необходимо учесть все возможные способы атак на неё.

   Классический криптоанализ

   Хотя  понятие криптоанализ было введено  сравнительно недавно, некоторые методы взлома были изобретены десятки веков назад. Первым известным письменным упоминанием о криптоанализе является «Манускрипт о дешифровке криптографических сообщений», написанный арабским учёным Ал-Кинди ещё в 9 веке. В этом научном труде содержится описание метода частотного анализа.

   Частотный анализ — основной инструмент для  взлома большинства классических шифров перестановки или замены. Данный метод основывается на предположении о существовании нетривиального статистического распределения символов, а также их последовательностей одновременно и в открытом тексте, и в шифротексте. Причём данное распределение будет сохраняться с точностью до замены символов как в процессе шифрования, так и в процессе дешифрования. Стоит отметить, что при условии достаточно большой длины шифрованного сообщения моноалфавитные шифры легко поддаются частотному анализу: если частота появления буквы в языке и частота появления некоторого присутствующего в шифротексте символа приблизительно равны, то в этом случае с большой долей вероятности можно предположить, что данный символ и будет этой самой буквой. Самым простым примером частотного анализа может служить банальный подсчёт количества каждого из встречающихся символов, затем следуют процедуры деления полученного числа символов на количество всех символов в тексте и умножение результата на сто, чтобы представить окончательный ответ в процентах. Далее полученные процентные значения сравниваются с таблицей вероятностного распределения букв для предполагаемого языка оригинала.

   В период XV-XVI веков в Европе создавались  и развивались полиалфавитные шифры замены. Наиболее известным является шифр французского дипломата Блеза де Виженера, в основу которого легло использование последовательности нескольких шифров Цезаря с различными значениями сдвига. На протяжении трёх веков Шифр Виженера считался полностью криптографически устойчивым, пока в 1863 году Фридрих Касиски не предложил свою методику взлома этого шифра. Основная идея метода Касиски заключается в следующем: если в открытом тексте между двумя одинаковыми наборами символов находится такой блок текста, что его длина кратна длине ключевого слова, то эти одинаковые наборы символов открытого текста при шифровании перейдут в одинаковые отрезки шифротекста. На практике это означает то, что при наличии в шифротексте одинаковых отрезков длиной в три и больше символов, велика вероятность того, что эти отрезки соответствуют одинаковым отрезкам открытого текста. Как применяется метод Касиски: в шифротексте ищутся пары одинаковых отрезков длины три или больше, затем вычисляется расстояние между ними, то есть количество символов, разделяющих стартовые позиции парных отрезков. В результате анализа всех пар одинаковых отрезков мы получим совокупность расстояний d1, d2, d3,… Очевидно, что длина ключевого слова будет делителем для каждого из расстояний и, следовательно, для их наибольшего общего делителя.

Информация о работе Криптология и криптография