Общие сведения о зданиях и сооружениях

Автор: Пользователь скрыл имя, 15 Декабря 2011 в 11:30, реферат

Описание работы

Строительство в нашей стране ведется в очень больших масштабах. Только жилых зданий в Советском Союзе возводится больше, чем во всех странах Западной Европы вместе взятых. Ежегодно у нас сдается в эксплуатацию 2,1 млн. квартир и более 10 млн. советских граждан улучшают свои жилищные условия, на карте нашей Родины появляются десятки новых городов. Именно поэтому строительство в нашей стране является третьей по масштабам после промышленности и сельского хозяйства отраслью народного хозяйства.

Содержание

1. ВВЕДЕНИЕ…………………………………………………………………………2
2. ДОЛГОВЕЧНОСТЬ И ИЗНОС ЗДАНИЙ…………………………………........5
2.1 Причины и механизм износа…………………………………………………….5
2.2 Физический износ и моральное старение……………………………………...8
2.3 Классификация повреждений зданий и её практическое использование...10
3. СПИСОК ЛИТЕРАТУРЫ…………………

Работа содержит 1 файл

типология.docx

— 213.15 Кб (Скачать)

Развитие промышленности и городов идет по линии использования более высоких скоростей технологических потоков, давлений, температур, образования агрессивных сред, т. е. по линии возникновения условий, когда на сооружения воздействуют более агрессивные среды и механические нагрузки, чем прежде, что, естественно, приводит к более быстрому их разрушению и необходимости более эффективной защиты.  

Способность материалов сопротивляться разрушительному воздействию  внешней среды называется коррозионной стойкостью, а предельный срок службы сооружений, в течение которого они сохраняют заданные эксплуатационные качества, и есть их долговечность.

Вещества и явления, способствующие разрушению, коррозии, называют стимуляторами или факторами, содействующими коррозии. Вещества и явления, затрудняющие и замедляющие разрушение, коррозию, называют пассиваторами или ингибиторами коррозии. 

Агрессивность или  пассивность среды не имеют универсального характера, т. е. они могут меняться ролями: в одних условиях определенная среда агрессивна, а в других — она же пассивна. Так, теплый, влажный воздух весьма агрессивен по отношению к стали, но цементный бетон он упрочняет. 

Разрушение строительных материалов носит весьма разнообразный характер: химический, электрохимический, физический, физико-химический. Детально это будет рассмотрено ниже применительно к основным строительным материалам: металлу, бетону, дереву. Классификация агрессивности сред и их воздействий приведена в СНиП 11.28—76. Агрессивные среды делятся на газовые, жидкие и твердые. Ниже дается их краткая характеристика.     

  Газовые среды — это прежде всего такие соединения, как сероуглерод (CS2), углекислый газ (СО2), сернистый газ (SO2) и др. Их агрессивность определяют три главных фактора, или показателя: вид и концентрация газов, растворимость газов в воде, влажность и температура газов.

Жидкие  среды — это растворы кислот, щелочей, солей, а также масла, нефть, растворители и др. Агрессивность таких сред определяется тремя показателями: концентрацией агрессивных агентов, их температурой, скоростью движения или величиной напора у поверхности конструкции. Коррозионные процессы более интенсивно протекают в жидкой агрессивной среде.

Твердые среды — это пыль, грунты и т. п. Их агрессивность оценивается четырьмя показателями: дисперсностью, растворимостью в воде, гигроскопичностью и влажностью окружающей среды. Влага в твердых средах играет особенно активную роль.

На рис. 1,6 показаны внешние и внутренние воздействия  на здания и сооружения. Все они  учитываются в нормах и при  разработке проектов, однако страна наша так велика, столь разнообразны климатические, гидрогеологические условия строительства, а также и внутренние воздействия, вызванные происходящими в сооружениях  процессами, что не всегда удается найти оптимальные решения, учитывающие все воздействия, относительно долговечности, экономичности и других показателей. Поэтому важной задачей персонала эксплуатационной службы является учет специфических воздействий на сооружения, что способствует обеспечению заданной их долговечности. Рассмотрим основные факторы, воздействующие на сооружения.

Воздействие воздушной  среды. В атмосфере содержатся пыль и газы, способствующие разрушению зданий. Загрязненный воздух, особенно в сочетании с влагой, вызывает преждевременный износ, коррозию или загрязнение, растрескивание и разрушение строительных конструкций. Вместе с тем в чистой и сухой атмосфере камни, бетоны и даже металлы могут сохраняться сотни и тысячи лет. Это значит, что воздушная среда, в которой находятся такие материалы, слабо агрессивна или совсем не агрессивна.

Основным загрязнителем  воздуха являются продукты сгорания различных топлив; поэтому в городах и промышленных центрах металлы корродируют в два-четыре раза быстрее, чем в сельской местности, где сжигается значительно меньше угля и нефтепродуктов.

Загрязненность воздуха  газами и твердыми частицами в  зимнее время шлите и зависит от вида топлива. Больше всего загрязняет атмосферу пылевидное топливо, ибо при его сжигании вместе с дымом уносится много золы и пыли, меньше всего — природные газы.

Основными продуктами сгорания большинства видов топлива являются углекислый (СО2) и сернистый (SO2) газы. При растворении углекислого газа в воде образуется углекислота — конечный продукт сгорания многих видов топлива; она разрушающе действует на бетон и иные материалы. При растворении сернистого газа в воде образуется серная кислота, также разрушающая бетон.

Кроме углекислоты  и серной кислоты, в дымах накапливаются и другие (свыше ста) вредные соединения: азотная и фосфорная кислоты, смолистые и иные вещества, несгоревшие частицы, которые, попадая на конструкции, загрязняют их и способствуют разрушению.

В приморских районах  в атмосфере могут содержаться  хлориды, соли серной кислоты и другие вредные для строительных материалов вещества. Влажность воздуха повышает его агрессивное воздействие, в частности на металлы.

Воздействие грунтовой  воды. Имеющаяся в природе грунтовая вода может быть: связанной (химически, гигроскопически и осмотически впитанной или пленочной); свободной; парообразной (перемещающейся по порам из мест с большой упругостью водяного пара в места с меньшей его упругостью).

Грунтовая вода взаимодействует  физически и химически с минеральными и органическими частицами грунта. Все ее виды находятся во взаимодействии друг с другом и переходят один в другой. Вода в грунтах всегда представляет собой раствор с изменяющимися концентрацией и химическим составом, что отражается и на степени ее агрессивности.

Оценивая агрессивность  грунтовых вод, следует учитывать  переменный ее характер: с течением времени возле подземных частей сооружений водный режим может изменяться, в связи с чем агрессивность  среды будет повышаться или снижаться.

Атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживающуюся в виде молекул на частицах грунта молекулярными силами, либо в пленочную, поверх молекулярной, либо в гравитационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грунтовой воды и, сливаясь с ней, повышать ее уровень.

Грунтовая вода, в  свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и обводняет верхние слои грунта. В некоторых условиях капиллярная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.

Изменение минералогического  состава грунтовых вод меняет их агрессивность по отношению к  подземным частям сооружений. В районах  с большим количеством осадков (в северных) уровень грунтовых  вод поднимается и снижается  их карбонатная жесткость (в результате разбавления осадками); это усиливает способность вод к выщелачиванию извести в бетонных конструкциях. В засушливых районах, наоборот, из-за большого испарения влаги повышается концентрация минеральных солей в воде, что вызывает кристаллизационное разрушение бетонных конструкций.

Испарение из грунтов  влаги и их увлажнение приводят к  движению в грунтах воздуха (кислорода), что также повышает их коррозионную активность.

Существует много  разновидностей агрессивности грунтовых  вод. Из них чаще всего выделяют общекислотную, выщелачивающую, сульфатную, магнезиальную и углекислотную в зависимости от наличия в воде соответствующих примесей и их концентрации, указанных в СНиП 11.28—76.

Воздействие отрицательной  температуры. Некоторые конструкции, например цокольные части, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания.

При замерзании воды в порах материала объем ее увеличивается, что создает внутренние напряжения, которые все возрастают вследствие сжатия массы самого материала под влиянием охлаждения. Давление льда в замкнутых порах весьма велико — до 20 Па. Разрушение конструкций в результате замораживания происходит только при полном (критическом) влагосодержании, насыщении материала.

Вода начинает замерзать  у поверхности конструкций, а  поэтому разрушение их под воздействием отрицательной температуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре —22°С, когда вся вода превращается в лед. Интенсивность замерзания влаги зависит от объема пор. Так, если вода в больших порах начинает переходить в лед при  

0°С, то в капиллярах она замерзает только при —17°С.

Самым устойчивым к  замораживанию является материал с  однородными и равномерными порами, наименее устойчивым— с крупными порами, соединенными тонкими капиллярами, так как перераспределение в них влаги затруднено.

Напряжение в конструкциях зависит не только от температуры охлаждения, но и от скорости замерзания и числа переходов через 0 °С; оно тем сильнее, чем быстрее происходит замораживание.

Камни и бетоны с  пористостью до 15 % выдерживают 100—300   циклов   замораживания.   Уменьшение   пористости, а следовательно, и количества влаги повышает морозостойкость конструкций.

Из сказанного следует, что при замерзании разрушаются  те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах — это прежде всего защитить их от увлажнения.

Промерзание грунтов  в основаниях опасно для зданий, построенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связанном виде. Связанная вода замерзает не сразу и по мере замерзания перемещается из зон толстых оболочек в зоны с оболочками меньшей толщины; это объясняется подсасыванием воды из нижних слоев в зону замерзающего грунта.

Промерзание и выпучивание  грунтов опасны только для наземных сооружений, поскольку уже на глубине примерно 1,5 м от поверхности нет разницы в колебаниях дневной и ночной температур, а на глубине 10—30 м не ощущается изменение зимних и летних температур.

Вода в грунте основания  независимо от того, является ли она  поверхностной, грунтовой или капиллярной, всегда создает опасность промерзания  грунта из-за повышения его теплопроводности при увлажнении.

Повреждения зданий из-за промерзания и выпучивания оснований могут произойти после многих лет эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промерзанию.

Воздействие технологических  процессов. Каждое здание и сооружение проектируется и строится с учетом воздействия предусматриваемых в нем процессов; однако из-за неодинаковой стойкости и долговечности материалов конструкций и различного влияния на них среды износ их неравномерен. В первую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжатые элементы и элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибаемые и растянутые тонкостенные, которые работают при динамической нагрузке, в условиях высокой влажности и высокой температуры.

Кислотостойкими являются породы с большим содержанием  кремния (кварц, гранит, диабаз), нестойки к кислотам породы, содержащие известь (доломит, известняк, мрамор); последние  являются щелочестойкими.

Обожженный кирпич стоек даже в среднекислой и средне-щелочной средах. Для него опасны плавиковая кислота и раствор едкого натра, он разрушается также при солевой коррозии.

Сухой бетон морозостоек, однако пересыхание его при температуре выше 60—80 °С приводит к обезвоживанию, прекращению гидратации, усадке, температурным деформациям. Предварительно-напряженный железобетон теряет свои прочностные качества уже при температуре выше 80 °С в результате снижения напряжения в арматуре.

Минеральные масла  химически неактивны по отношению  к бетонам, но в то же время отрицательно на них воздействуют, так как их поверхностное натяжение в два-три раза меньше, чем у воды, а поэтому они обладают большей смачивающей способностью и большей силой капиллярного поднятия: масло, попавшее на бетон, глубоко проникает в него, расклинивая частицы, изолируя зерна цемента от влаги и прекращая тем самым их дальнейшую гидратацию. Относительное снижение прочности бетона под действием пролитого масла тем значительнее, чем выше водоцементное отношение (В/Ц): с увеличением пористости бетона возрастает его насыщенность растворами, в том числе и маслами.

Износ конструкций  под действием истирания —  абразивный износ полов, стен, углов  колонн, ступеней лестниц и других конструкций—бывает весьма интенсивным  и поэтому сильно влияющим на их долговечность. Он происходит под действием  как природных сил (ветров, песчаных бурь), так и вследствие технологических  и функциональных процессов, например из-за интенсивного перемещения больших  людских потоков в зданиях общественного назначения.  

Информация о работе Общие сведения о зданиях и сооружениях