Лекции по "Теплотехнике"

Автор: Пользователь скрыл имя, 15 Марта 2012 в 20:43, курс лекций

Описание работы

Человек использует теплоту во всех областях своей деятельности. Установление рациональных способов его использования, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых агрегатов невозможно без знания теоретических основ теплотехники. Теплота используется человечеством по двум принципиально различным направлениям: энергетическом и технологическом.

Содержание

ВВЕДЕНИЕ
1. ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА.
1.1. Предмет и основные понятия
1.2. Параметры состояния
1.3. Уравнение состояния и термодинамический процесс
1.4 Первый закон термодинамики
Теплота и работа
Внутренняя энергия
Первый закон термодинамики
1.5.Теплоемкость газа
1.6. Уравнение состояния идеального газа
Смесь идеальных газов
1.7. Второй закон термодинамики
Основные положения второго закона термодинамики
1.8. Термодинамические процессы
Политропный процесс
1.9. Термодинамика потока
Первый закон термодинамики для потока
Критическое давление и скорость. Сопло Лаваля
Дросселирование
1.10. Сжатие газов
Объемный компрессор
17.2. Лопаточный компрессор
3.10.Реальные газы. Водяной пар. Влажный воздух
Свойства реальных газов
Уравнения состояния реального газа
Водяной пар
Характеристики влажного воздуха
ссм = сВ + d·сП . (6.18)
1.12. Термодинамические циклы
Циклы паротурбинных установок (ПТУ)
Циклы двигателей внутреннего сгорания (ДВС)
Циклы газотурбинных установок (ГТУ)
2.ОСНОВЫ ТЕОРИИ ТЕПЛООБМЕНА
2.1. Основные понятия и определения
2.2.Теплопроводность
Температурное поле. Уравнение теплопроводности
Тепловой поток, передаваемая теплопроводностью, пропорциональна градиенту температуры и площади сечения, перпендикулярного направлению теплового потока.
Стационарная теплопроводность через плоскую стенку
Стационарная теплопроводность через цилиндрическую стенку
Стационарная теплопроводность через шаровую стенку
2.3. Конвективный теплообмен
Факторы, влияющие на конвективный теплообмен
Закон Ньютона-Рихмана
Критериальные уравнения конвективного теплообмена
Свободная конвекция в неограниченном пространстве.
Вынужденная конвекция.
2.4. Тепловое излучение
Общие сведения о тепловом излучении
2.5.Теплопередача
Теплопередача через плоскую стенку
Теплопередача через цилиндрическую стенку
2.6. Теплообменные аппараты
Расчет теплообменных аппаратов
3.ТЕПЛОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ
3.1. Энергетическое топливо. Состав топлива
Характеристика топлива
Моторные топлива для поршневых ДВС
3.2. Котельные установки
Котельный агрегат и его элементы
3.3. Вспомогательное оборудование котельной установки
14.3. Тепловой баланс котельного агрегата
3.5. Топочные устройства
3.6. Сжигание топлива
Теплотехнические показатели работы топок
Физический процесс горения топлива
Определение теоретического и действительного расхода воздуха на горение топлива
Количество продуктов сгорания топлива
Вопросы экологии при использовании теплоты
18.1. Токсичные газы продуктов сгорания
18.2. Воздействия токсичных газов
18.3. Последствия парникового эффекта
Литература

Работа содержит 1 файл

Конспект лекций по теплотехнике.doc

— 1.99 Мб (Скачать)

 

Твердые и жидкие топлива состоят из горючих (углерода - С, водорода - Н, летучей серы - Sл == Sор + Sк) и негорючих (азота - N и кислорода - О) элементов и балласта (золы - А, влаги - W).

Элементарный состав твердого и жидкого топлива дается в процентах к массе 1 кг топлива. При этом различают рабочую, сухую, горючую и органическую массу топлива.

Рабочая масса – это масса и состав топливо, в котором поступает к потребителю и подвергается сжиганию.

Состав рабочей, горючей, сухой и органической массы обозначается соответственно индексами "р", "с", "г" и "о" и выражаются следующими равенствами:

Ср + Нр + Sрл + Nр + Oр + Aр + Wр = 100 % ; (13.1)

Сс + Нс + Sсл + Nс + Oс + Aс = 100 % . (13.2)

Сг + Нг + Sгл + Nг + Oг = 100 % ; (13.3)

Со + Но + Sоорг + Nо + Oо = 100 % . (13.4)

Органическая масса топлива в отличии от горючей массы содержит только органическую серу и не включает колчеданную:

Sоорг = Sол - Sок . (13.5)

Коэффициенты пересчета состава топлива из одной массы в другую приведены в табл. 13.3.

Таблица 13.3

Заданная масса топлива

Коэффициенты пересчета на массу

 

рабочую

горючую

сухую

Рабочая

1

100/[100 - (Aр + Wр)]

100/(100 - Wр)

Горючая

[100 - (Aр + Wр)]/100

1

(100 - Aс)/100

Сухая

(100 - Wр) / 100

100 / (100 - Aс)

1

 

Для сланцев состава (Ср, Нр, Sрл, Nр, Oр, Aр, Wр) пересчет с рабочей

массы на горючую осуществляется с помощью коэффициента:

К = 100 / [100 - Aри - Wр - (СО2)рк] , (13.6)

где Aри - истинная зольность рабочей массы, %·, Wр - влажность рабочей массы, %, (СО2)рк - содержание углекислоты карбонатов, %. Истинная зольность рабочей массы определяется по формуле

Aри = Aр - [2,5(Sра - Sрс ) +0,375Sрк] [(100 - Wр) / 100], (13.7)

где Sра - содержание серы в лабораторной золе в процентах к массе топлива; Sрс - содержание сульфатной серы в топливе, %.

Величина [2,5(Sра - Sрс) +0,375Sрк] для ленинградских и эстонских сланцев может быть принята равной 2,0, для кашпирских - 4,1.

Пересчет состава (%) рабочей массы топлива при изменении влажности производится по формулам :

Ср2 = Ср1(100 - Wр2) / (100 - Wр1) 

Hр2 = Hр1(100 - Wр2) / (100 - Wр1)  , (13.8) .

где Wр1 - начальная влажность топлива, %, Wр2 - конечная влажность топлива, %.

Средний состав (%) смеси двух твердых или жидких топлив, заданных массовыми долями, - первого (Ср2, Hр2 ....)и второго (Ср1, Hр ...) - определяется по уравнениям:

Срсм = b1 Cр1 + (1 - b1) Cр2 ,

Hрсм = b1 Hр1 + (1 - b1) Hр2 ,  , (13.9)

где массовая доля b1 одного из топлив в смеси находится по формуле:

b1 = В1 /(В1 + В2) . (13.10)

Здесь В1 и В2 - массы топлив, входящих в смесь, кг.

Газообразное топливо представляет собой смесь горючих и негорючих газов. Горючая часть состоит из предельных (?СnH2n+2) и непредельных (?СnH2n) углеводородов, водорода Н2, окиси углерода СО, и сернистого водорода (Н2S). В состав негорючих элементов входит азот ( N2), углекислый газ (СO2)и кислород (О2). Составы природного и искусственного газообразных топлив различны. Природный газ характеризуется высоким содержанием метана (СH4), а также небольшого количества других углеводородов: этана (С2H6), пропана (С3H8), бутана (С4H10), этилена (С2H4), и пропилена (С3H6). В искусственных газах содержание горючих составляющих (водорода и окиси углерода) достигает 25-45%, в балласте преобладают азот и углекислота – 55-75%.

Состав газообразного топлива задается в объемных долях и в общем виде можно записать следующим образом:

СnH2n+2 + СnH2n + Н2 + СО + Н2S + О2 + N2 + CО2 = 100% , (13.11)

где СnH2n+2 – предельные углеводороды;

СnH2n – непредельные угловодороды;

Н2S – сернистый водород.

СО – окись углерода;

CО2 - углекислый газ.

Характеристика топлива

Влажность воздуха. Средняя влажность топлива в рабочем состоянии составляет в %: для торфа 50; сланцев 13-17; каменного угля 5-14 и антрацита 5-8. Бурые угли в зависимости от влажности делят на 3 группы: группа Б1 – более 40% влажности; группа Б2 – 30-40%; группа Б3 – менее 30%.

Зола топлива. В состав золы входят преимущественно соли щелочных и щелочно-земельных металлов, окислы железа, алюминия, а также сульфатная сера. Минеральные остатки, образующиеся после сгорания топлива, имеют вид либо сыпучей массы (зола), либо сплавленных кусков (шлак). При высоких температурах зола размягчается, а затем плавится. Размягченная зола и шлак прилипают к стенкам обмуровки топки, уменьшая сечение газоходов откладываются на поверхностях нагрева, увеличивая тем самым термическое сопротивление в процессе теплопередачи о газов к нагреваемой среде, забивают отверстия для прохода воздуха в колосниковой решетке, обволакивают частицы топлива, затрудняя их сжигание.

Различные виды топлива содержат разное количества золы. Например, в %: древесина – 1; торф – 10; кузнецкий уголь – 10-20; подмосковный бурый уголь – 30; сланцы – 60. Жидкое топливо (мазут) содержит 0,2-1% минеральных примесей.

Летучие вещества. При нагревании твердого топлива до 870-1100 К без доступа окислителя, выделяются парогазообразные вещества, которые называются летучими. Они являются продуктами распада сложных органических веществ, содержащихся в органической массе топлива. В состав летучих веществ входят: азот N2, кислород О2, водород Н2, окись углерода СО, углеводородные газы СH4, С2H4 и т.д, а также водяные пары.

Кокс. Твердый остаток, который получается после нагревания топлива (без доступа окислителя) и выхода летучих веществ. В состав кокса входят остаточный углерод и зола. При низких температурах в твердом остатке кроме золы может оказаться часть элементов (C, H, Sл, N). Тогда твердый остаток называется полукоксом. По своим механическим свойствам кокс может быть порошкообразным, слабоспекшимся и спекшимся.

В зависимости от выхода летучих веществ и характеристики кокса каменные угли разделяются на 10 марок: длиннопламенный - Д, газовый - Г, газовый жирный – ГЖ, жирный – Ж, коксовый жирный = КЖ, коксовый - К, коксовый второй – К2, отощенный спекающийся – ОС, слабоспекающийся – СС, тощий – Т.

Теплота сгорания. Одной из основных характеристик любого вида топлива является теплота сгорания, т.е. то количество теплоты, которое может быть получено при полном сгорании единицы массы или объема топлива. Полным сгоранием называется такое, при котором горючие компоненты топлива С, Н и S полностью окисляются кислородом. Теплоту сгорания твердого и жидкого топлива относят к 1 кг, а газового – к 1 м3 при нормальных условиях.

Различают низшую и высшую теплоту сгорания. В высшую теплоту сгорания входит количество теплоты, которое может быть выделено при конденсации водяных паров, находящихся в продуктах сгорания топлива.

При известном элементарном составе твердого и жидкого топлив теплоту их сгорания (кДж/кг) определяют по эмпирическим формулам, предложенной Д.И.Менделеевым:Qpн = 340Ср + 1035Нр – 109(Ор - Sрл) – 25Wр . (13.12)

Qpв = 340Ср + 1260Нр – 109(Ор - Sрл) ; (13.13)Теплота сгорания сухого газа (кДж/м3) определяют по объемному составу,%, и известной теплоте сгорания компонентов:Qpн = 358СН4 + 640С2Н6 + 915С3Н8 + 1190С4Н10 +

+ 1465 С5Н12 + 126,5 СО + 107,5Н2 + 234Н2S; (13.14)

Qpн = 398СН4 + 700С2Н6 + 995С3Н8 + 1285 С4Н10 +

+ 1575 С5Н12 + 126,5 СО + 127,5Н2 + 257Н2S; (13.15)Если в состав газа входят неизвестные углеводородные компоненты (при условии, что содержание метана известно), то сумму углеводородов условно принимают как содержание этана С2Н4 и теплоту сгорания рассчитывают по формулам, аналогичным уравнениям (13.14) и (13.15).

Для сравнения различных видов топлива по их тепловому эффекту вводят понятие условного топлива, теплота сгорания которого принята равной 29300 кДж/кг.

Отношение Qpн данного топлива к Qу.т. условного топлива называется топливным эквивалентом – Э. Тогда для расчета расхода натурального топлива Вн в условное Ву.т. , достаточно величину Вн умножить на эквивалент Э, т.е.:

Ву.т. = Ву.т•Э = Ву.т.•(Qpн / Qу.т.)(13.16)

Моторные топлива для поршневых ДВС

Основными моторными топливами являются бензины и дизельные топлива, получаемые путем переработки нефти. Кроме этого также используют сжатые и сжиженные газы; синтетические топлива, получаемые переработкой угля, сланцев, битумонозных песков; спирты; эфиры.

Автомобильные бензины представляют собой смеси углеводородов, выкипающих в диапазоне температур 35…205?С и вырабатываются следующих марок: по ГОСТу 2084-77 А-76, АИ-93 (А-92), АИ-95, а также неэтилированный АИ-91; экспортные бензины А-80, А-92, А-96, с улучшенными экологическими свойствами – НОРСИ АИ-80, НОРСИ АИ-92, НОРСИ АИ-95. Цифры в марке бензина показывает октановое число (ОЧ), которое характеризует детонационную стойкость бензина.

Дизельные топлива вырабатываются в основном из гидроочищенных фракций прямой перегонки нефти. В Росиии вырабатывают три сорта дизельного топлива:

"л" (летнее) – для эксплуатации при температуре 0?С и выше;

"з" (зимнее) - для эксплуатации при температуре -20?С и выше;

"а" (арктическое) - для эксплуатации при температуре -50?С и выше.

Углеводородные газообразные топливапри нормальных условиях подразделяют на сжатые (СПГ) и сжиженные (СНГ). В качестве сжатого газа используют природный газ (95% метана СН4). Сжиженные газы являются продуктами переработки попутных газов и газов газоконденсатных месторождений и восновном содержат бутанпропановые и бутиленпропиленовые смеси, находящиеся при нормальной температуре в жидком состоянии.

Основным преимуществом гакзовых топлив является их чистота, более легкий запуск в холодное время, высокие экологические качества.

3.2. Котельные установки

Котельный агрегат и его элементы

Как уже указывалось, устройства, в которых непосредственно вырабатывается пар и нагревается вода, называют паровыми или водогрейными котлами. Если котлы в отопительных котельных вырабатывают пар давлением Р

В производственных и энергетических котельных по давлению получаемого пара котельные агрегаты разделяются на следующие: низкого давления (0,8-1,6 МПа), среднего (2,4-4 МПа), высокого (10-14МПа) и сверхвысокого давления (25-31Мпа). Паровые котельные агрегаты стандартизированы (ГОСТ 3619-76) по параметрам вырабатываемого пара (Р и Т) и мощности.

Котельные агрегаты производительностью 0,01-5,5 кг/с относятся к котлам малой мощности, производительностью до 30 кг/с к котлам средней мощности и более 30 кг/с (до 500-1000 кг/с) – к котлам большой мощности.

Водогрейные котлы унифицированы по теплопроизводительности на восемь типов: 4, 6,5, 10, 20, 30, 50, 100 и 180 Гкал/ч. Котлы теплопроизводительностью ниже 30 Гкал/ч предназначаются для работы только в одном режиме (основном). Котлы теплопроизводительностью 30 Гкал/ч и выше допускают возможность работы как в основном, так и в пиковом режимах, т.е. в период максимального теплопотребления при наиболее низких температурах наружного воздуха.

Для котлов теплопроизводительностью до 30 Гкал/ч температура воды на выходе принимается 432 К, а давление воды на входе в котел – 1,6 МПа. Для котлов теплопроизводительностью 30 Гкал/ч и выше максимальная температура воды на выходе принимается 450-470 К, а давление воды на входе – 2,5 МПа.

По конструкции паровые котлы можно разделить на два типа – газотрубные и водотрубные. В газотрубных котлах основные поверхности нагрева находятся внутри цилиндрического сосуда большого диаметра в виде так называемых жаровых или дымогарных труб или различных их комбинаций, по которым движутся продукты сгорания топлива. На рис. 14.1 показаны схемы котлов с жаровыми и дымогарными трубами.

Более совершенными являются водотрубные паровые котлы. Они имеют развитые поверхности нагрева, состоящие из труб, заполненных внутри водой и пароводяной смесью, а снаружи обогреваемых продуктами сгорания топлива. Котлы относятся к горизонтально-водотрубным, если трубы расположены под углом к горизонту не более 25о, и к вертикально-водотрубным, если трубы идут более круто или вертикально. В этих котлах путем изменения числа труб в пучках и числа самых пучков удалось увеличить площадь поверхности нагрева, не увеличивая диаметр их барабанов, что в свою очередь дало возможность получить в этих котлах пар высокого давления.

При работе парового котла очень важно обеспечить надежное охлаждение поверхностей нагрева, в которых происходит парообразование. Для этого необходимо соответствующим образом организовать движение воды и пароводяной смеси в испарительных поверхностях нагрева. По характеру организации движения рабочего тела в испарительных поверхностях котельные агрегаты делятся на три типа:

1.                  с естественной циркуляцией (рис 14.2,а);

2.                  с принудительной циркуляцией (рис 14.2,б);

3.                  прямоточные.

Принципиальная схема прямоточного котла показана на рис 14.3. Питательная вода подается в конвективный экономайзер 6, где она подогревается за счет тепла газов, и поступает в экранные трубы 2, выполненные в виде параллельно включенных змеевиков, расположенных на стенах топочной камеры. В нижней части змеевиков вода нагревается до температуры насыщения. Парообразование до степени сухости 70-75% происходит в змеевиках среднего уровня расположения. Пароводяная смесь затем поступает в переходную конвективную зону 4, где происходит окончательное испарение воды и частичный перегрев пара. Из переходной зоны пар направляется в радиационный перегреватель 2, затем доводится до заданной температуры в конвективном перегревателе 3 и поступает на турбину. В опускной шахте котлоагрегата расположены первая (по ходу газов) и вторая ступени 5 и 7 воздухоподогревателя.

К основным элементам котельных агрегатов относятся пароперегреватели, экономайзеры и воздухоподогреватели.

Информация о работе Лекции по "Теплотехнике"