История развития теплотехники и тепловых двигателей

Автор: Пользователь скрыл имя, 21 Января 2012 в 07:55, реферат

Описание работы

Тепловые двигатели (паровые турбины) устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном - поршневые двигатели внутреннего сгорания, на водном - двигатели внутреннего сгорания и паровые турбины, на железнодорожном - тепловозы с дизельными установками, в авиации - поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима: мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Содержание

Введение 3

1. Истоки развития теплоэнергетики 4

2. Развитие теплоэнергетики и тепловых машин 6

2.1 Паровая машина и принцип ее действия 6

2.2 История развития тепловых машин 7

Заключение 13

Список используемых источников 14

Работа содержит 1 файл

История развития теплотехники и тепловых двигателей.docx

— 665.56 Кб (Скачать)

Оглавление 

Введение 3

1. Истоки развития теплоэнергетики 4

2. Развитие теплоэнергетики и тепловых машин 6

2.1 Паровая машина и принцип ее действия 6

2.2 История развития тепловых машин 7

Заключение 13

Список используемых источников 14

Приложения 15 

 

     

Введение

      Техника - составная  часть производительных сил общества. И на определенной ступени развития общества материальные и производительные силы приходят в противоречия с существующими производственными отношениями. При разрешении этих противоречий и появляются эпохальные изобретения. Они меняют облик страны и всего мира, т. е. наступает промышленный переворот.

      Эпоха промышленного переворота в период 1760-1870 гг. ознаменовалась переходом  от мануфактуры к машинному производству, скачком в развитии производительных сил. Прогресс в промышленности стал возможным благодаря взаимному стимулированию развития науки и техники, появлению постоянных социальных заказов общества к науке и технике, обеспечивающих ускорение темпов развития. Инновационные процессы, в нынешнем понимании, предвосхитили развитие экономических отношений.

      Тепловой  двигатель – устройство, преобразующее  внутреннюю энергию топлива в  механическую энергию. К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твердое и жидкое топливо, солнечная и атомная энергии.

      Тепловые  двигатели (паровые турбины) устанавливаются на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока, а также на всех атомных электростанциях для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном - поршневые двигатели внутреннего сгорания, на водном - двигатели внутреннего сгорания и паровые турбины, на железнодорожном - тепловозы с дизельными установками, в авиации - поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима: мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

     Работа состоит из введения, основной части, заключения, списка источников и приложения.

1. Истоки развития теплоэнергетики

     История развития теплоэнергетики и, в частности, тепловых двигателей связана с эволюцией развития естествознания и техники. Рассмотрим вопрос и истории развития тепловых двигателей на основе развития естествознания и техники. Каковы же были научные предпосылки появления тепловых двигателей? Кто же были те «гиганты науки», на плечах которых строилось « здание» современной теплотехники. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара (Приложение 1). Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи. Первое четкое упоминание об использовании «движущей силы огня» относится к I в. до н. э., когда Герон Александрийский построил множество различных паровых машин-игрушек, вершиной которых был прообраз реактивно-турбинного двигателя Эолопил, и сделал попытку дать теоретическое объяснение их рабочего процесса. Эолопил представлял собой полый металлический шар с впаянными в него на противоположных полушариях открытыми трубками, загибавшимися в разные стороны. В шар наливалась вода и подогревалась до кипения. Образовавшийся пар выбрасывался из трубок, создавая реактивные силы, под действием которых шар вращался в трубчатых опорах (Приложение 2). Однако низкий уровень науки и техники и отсутствие потребности в новом двигателе у общества остановили его разработку почти на 1700 лет.

     Отдельные технические решения возникали  и совершенствовались по мере развития естествознания в целом и отдельных  базовых наук: теплотехники, гидравлики, механики и других. В рукописях Леонардо да Винчи начала XVI в есть несколько рисунков с изображением цилиндра и поршня. Под поршнем в цилиндре находится вода, а сам цилиндр подогревается. Леонардо да Винчи предполагал, что образовавшийся в результате нагрева воды пар, расширяясь и увеличиваясь в объеме, будет искать выход и толкать поршень вверх. Во время своего движения вверх поршень мог бы совершать полезную работу. В середине XVI в. итальянец  Кардан указывал на свойство пара конденсировать при охлаждении. В XVII веке именно эта идея стала занимать умы учёных. Расширяющийся пар может совершить работу. Нужно, только чтобы пробка превратилась в поршень, соединенный с каким-нибудь насосом или механизмом да научиться возвращать поршень в исходное положение. Здесь пригодились исследования Эванжелисто Торричелли по атмосферному давлению. Если под поршнем образуется «пустота», то атмосферное давление вернёт его на прежнее место и процесс можно повторить снова. Этим и занимался врач по образованию, француз Дени Папен. Опыты итальянца Дж.делла Порта по исследованию удельного объема водяного пара (1601 г.) показали возможность подъема воды давлением пара, причем необходимость кипячения всей поднимаемой воды исключалась применением отдельного сосуда – парогенератора, предшественника парового котла. Позднее француз Саломон де Ко описывал «страшную силу» пара, способного, как показали опыты, разорвать толстостенный металлический сосуд и также поднимать воду высоким фонтаном (1623 г.). Таким образом, «сила водяного пара» не могла не обратить на себя внимание, как на один из источников энергии, не зависящий от местных условий и способный  решать наиболее актуальную задачу водоподъема.

     Появление тепловых двигателей связано с возникновением и развитием промышленного производства в начале XVII в. главным образом в Англии. С увеличением глубины рудников потребность в мощности для откачивания воды увеличивалась в связи с повышением объемов откачиваемой воды и ростом высоты ее подъема из рудников. Копи, в которых добывали руду, нуждались в устройствах для откачки воды. Глубина шахт стала достигать 200 м. Приходилось держать до пятисот лошадей на одном руднике. Эта чисто практическая задача и стала причиной того, что первым тепловым двигателем стала машина для откачки воды.

     Кризис, начавшийся в водоподъемных установках еще в XVII в., в XVIII в. распространился  и на другие отрасли производства.

     Таким образом, практика сумела решить первый этап задачи перехода от водяного колеса к тепловому двигателю.

 

     

2. Развитие теплоэнергетики и тепловых машин

     2.1 Паровая машина  и принцип ее действия

     Паровая машина — тепловой поршневой двигатель, в котором потенциальная энергия водяного пара, поступающего из парового котла, преобразуется в механическую работу возвратно-поступательного движения поршня или вращательного движения вала. Поршень образует в цилиндре паровой машины одну или две полости переменного объёма, в которых совершаются процессы сжатия и расширения, зависимости давления p от объёма V полостей. Эти кривые образуют замкнутую линию в соответствии с тепловым циклом, по которому работает паровая машина между давлениями p 1 и p 2, а также объёмами V 1 и V 2.

     Работа  паровой машины двойного действия: моменты начала и конца процессов расширения и сжатия пара дают четыре основные точки реального цикла паровой машины: объём Ve, определяемый точкой 1 начала или предварения впуска; объём конца впуска или наполнения Е, определяемый точкой 2 отсечки наполнения; объём предварения выпуска или конца расширения Va, определяемый точкой 3 предварения выпуска; объём сжатия V c , определяемый точкой 4 начала сжатия. В реальной паровой машине перечисленные объёмы фиксируются парораспределительными органами. Устройство паровой машины на рис.1.

 

Рисунок 1 - Устройство паровой машины 

     Работа поршня 1 посредством штока 2, ползуна 3, шатуна 4 и кривошипа 5 передаётся главному валу 6, несущему маховик 7, который служит для снижения неравномерности вращения вала. Эксцентрик, сидящий на главном валу, с помощью эксцентриковой тяги приводит в движение золотник 8, управляющий впуском пара в полости цилиндра. Пар из цилиндра выпускается в атмосферу или поступает в конденсатор. Для поддержания постоянного числа оборотов вала при изменяющейся нагрузке паровые машины снабжаются центробежным регулятором 9, автоматически изменяющим сечение прохода пара, поступающего в паровую машину (дроссельное регулирование, показано на рисунке), или момент отсечки наполнения (количественное регулирование).

     2.2 История развития  тепловых машин

     В решении задачи перехода к теплоэнергетике выделено три этапа развития:

     а) двигатель неотделим от потребителя  развиваемой им работы;

     б) двигатель конструктивно обособился от машины – потребителя энергии, но еще не стал вполне самостоятельным;

     в) двигатель стал самостоятельным,  универсальным.

     Ранний  тепловой двигатель, конструктивно  слитый с агрегатом – потребителем производимой им механической работы, возник в качестве решения наиболее острой технической задачи конца XVII в. – задачи о рудничном водоподъеме. Одной из таких попыток была попытка Вустера, получившего в 1660 г. патент на паровой водоподъемник и в 1663 г. давшего его описание. По этому описанию установка Вустера вычерчивалась многими исследователями. Лучшее решение той же задачи было дано англичанином шахтовладелецем Томасом Севери. В 1698 г. он получил патент №356 с формулировкой, что он выдан на устройство «для подъема воды и для получения движения всех видов производства при помощи движущей силы огня...». Севери первым отделил рабочее тело (водяной пар) от перекачиваемой воды. Для этого он сделал отдельный котел, а пар, который поломали в котле, через кран выпускал в сосуд с водой, и пар вытеснял воду в напорную (верхнюю) трубу (Приложение 3). Впоследствии машина Севери была усовершенствована в 1715 г. французским физиком Дезагюлье, предложившим охлаждать пар в сосуде путем впрыскивания в него воды. Это существенно увеличило частоту рабочих циклов, улучшение работы насосов, повышение их экономичности. Так, Дезагюлье явился изобретателем смесительной конденсации, правда осуществлявшейся пока не в отдельном конденсаторе, а непосредственно в полости двигателя, служившего одновременно и потребителем механической работы. Одна из таких машин была выписана Петром I и установлена в Летнем саду. Машины Севери оказались очень надежными и долговечными.

     Французский ученый Дени Папен начал с попыток изобретения универсального двигателя, способного производить механическую работу подъема груза. Он обратился к имевшейся повсюду «громадной силе» атмосферного давления и построил цилиндр (Приложение 4), в котором вверх и вниз свободно перемещался поршень. Поршень был связан тросом, перекинутым через блок, с грузом, который вслед за поршнем также поднимался и опускался. По мысли Папена, поршень можно было связать с какой-либо машиной, например водяным насосом, который стал бы качать воду. В нижнюю откидывающуюся часть цилиндра насыпали порох, который затем поджигали. Образовавшиеся газы, стремясь расшириться, толкали поршень вверх. После этого цилиндр и поршень с наружной стороны обливали холодной водой. Газы в цилиндре охлаждались, и их давление на поршень уменьшалось. Поршень под действием собственного веса и внешнего атмосферного давления опускался вниз, поднимая при этом груз. Двигатель совершал полезную работу. Для практических целей он не годился: слишком уж сложен был технологический цикл его работы (засыпка и поджигание пороха, обливание водой, и это на протяжении всей работы двигателя). Кроме того, применение подобного двигателя было далеко не безопасным. Однако нельзя не усмотреть в первой машине Папена черты современного двигателя внутреннего сгорания. Как физик Папен понял и оценил энергетические свойства водяного пара, но как техник не смог реализовать их в конструкции двигателя.

     Следующий важный шаг по пути создания тепловых двигателей совершил английский изобретатель, кузнец по профессии Томас Ньюкомен. Выполняя заказы на детали для машины Севери, он пришел к мысли, что ее производительность и экономичность можно повысить, разделив функции насоса и двигателя т. е. использовав в машине Севери идею Папена, взяв цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле (Приложение 5). Машина Ньюкомена, как и все ее предшественницы, работала прерывисто — между двумя рабочими ходами поршня была пауза. Высотой она была с четырех - пятиэтажный дом и, исключительно «прожорлива»: пятьдесят лошадей еле-еле успевали подвозить ей топливо. Обслуживающий персонал состоял из двух человек: кочегар непрерывно подбрасывал уголь в «ненасытную пасть» топки, а механик управлял кранами, впускающими пар и холодную воду в цилиндр.

     Паровая машина Ньюкомена не была универсальным двигателем и могла работать только как насос. Последующие изобретатели внесли много усовершенствований в насос Ньюкомена, но принципиальная схема машины Ньюкомена оставалась неизменна на протяжении 50 лет, прежде чем был построен универсальный паровой двигатель. Заслуга Ньюкомена была в том, что он одним из первых реализовал идею использования пара для получения механической работы.

     Идею  создания теплового двигателя, свободного от гидравлического колеса, со всею определенностью высказал и осуществил русский механик Иван Иванович Ползунов, который построил свою «огнедействующую машину» на одном из барнаульских заводов. В отличие от паровых насосов Севери и Ньюкомена, о которых Ползунов знал и недостатки которых ясно осознавал, это был проект универсальной машины непрерывного действия. Машина предназначалась для воздуходувных мехов, нагнетающих воздух в плавильные печи. Главной ее особенностью было то, что рабочий вал качался непрерывно, без холостых пауз. Это достигалось тем, что Ползунов предусмотрел вместо одного цилиндра, как это было в машине Ньюкомена, два попеременно работающих. Пока в одном цилиндре поршень под действием пара поднимался вверх, в другом пар конденсировался, и поршень шел вниз. Оба поршня были связаны одним рабочим валом, который они поочередно поворачивали то в одну, то в другую стороны. Рабочий ход машины осуществлялся не за счет атмосферного давления, а благодаря работе пара в цилиндрах. Кроме того, Ползунов внес серьезные усовершенствования в конструкцию рабочих органов двигателя, применил оригинальную систему паро- и водораспределения, и в отличие от машин Ньюкомена ось вала его машины была параллельна плоскости цилиндров. Изобретательность Ползунова не может не вызвать восхищения, он первым понял, что можно заставить паровую машину приводить в движение не только насос, но и кузнечные мехи. Рабочие органы его машины передавали движение валу отбора мощности. Это качество придавало машине Ползунова свойство универсальности. Машина Ползунова была изготовлена в декабре 1765 г. (Приложение 6), а в мае 1766 г. ее создатель умер от чахотки. Машина была испытана уже после его смерти в октябре 1766 г. и работала, в общем, удовлетворительно. Как и всякий первый образец, она нуждалась в доработке, к тому же в ноябре обнаружилась течь котла, но без изобретателя устранением недостатков никто не занимался. Машина бездействовала до 1779 г., а затем была разобрана. На судьбе изобретения И.И.Ползунова сказались условия феодально-крепостнической России, еще не готовой для перехода к крупному машинному производству.

Информация о работе История развития теплотехники и тепловых двигателей