Структура клетки,теория дарвина

Автор: Пользователь скрыл имя, 09 Января 2013 в 00:36, контрольная работа

Описание работы

Нашему времени свойственна все более возрастающая взаимозависимость людей. Жизнь человека, его здоровье, условия труда и быта почти целиком зависят от правильности решений, принимаемых очень многими людьми. В свою очередь, деятельность отдельного человека также влияет на судьбу многих. Именно поэтому очень важно, чтобы наука о жизни стала неотъемлемой частью мировоззрения каждого человека независимо от его специальности. Инженеру- строителю, инженеру- технологу, инженеру- мелиоратору знание биологии необходимо так же, как врачу или агроному,

Содержание

1.Введение
2. Основные органические вещества, входящие в состав клетки…………………………….4
3. Бесполое размножение. Половое размножение. Развитие половых клеток гаметогенез...............…………………………………………………………………………….8
4. Естественно-научные предпосылки эволюционного учения Ч.Дарвина. Искусственный отбор — механизм преобразования человеком живой природы. Основные положения учения Ч.Дарвина ...……………………………………………………………………………13
5. Заключение…………………………………………………………………………………..17
6. Список использованной литературы ..……………

Работа содержит 1 файл

Биология.docx

— 101.01 Кб (Скачать)

АНО ВПО «СУРАО»

 

ИНСТИТУТ  КИНОЛОГИИ И БЕЗОПАСНОСТИ

 

 

 

Кафедра кинологии  и безопасности

 

 

 

 

 

 

 

 

КОНТРОЛЬНАЯ РАБОТА

 

 

ДИСЦИПЛИНА   ОБЩАЯ БИОЛОГИЯ

 

ТЕМА  ВАРИАНТ 4.

 

 

 

Исполнитель: студент  института  кинологии и безопасности

 

Группы №  КМ-610

Курс 3

 

КОНОВАЛОВ Д.А.

___________________________________

(подпись, ФИО)

 

 

 

 

 

Дата сдачи « 20 » декабря 2012г.

 

 

 

 

 

 

 

Санкт-Петербург

2012

 

 

 

 

 

 

СОДЕРЖАНИЕ

1.Введение

2. Основные органические вещества, входящие в состав клетки…………………………….4

3. Бесполое размножение. Половое размножение. Развитие половых клеток гаметогенез...............…………………………………………………………………………….8

4. Естественно-научные предпосылки эволюционного учения Ч.Дарвина. Искусственный отбор — механизм преобразования человеком живой природы. Основные положения учения Ч.Дарвина ...……………………………………………………………………………13

5. Заключение…………………………………………………………………………………..17

6. Список использованной литературы ..………………………………………………….....18

 

Введение

 

Нашему  времени свойственна все более  возрастающая взаимозависимость людей. Жизнь человека, его здоровье, условия  труда и быта почти целиком  зависят от правильности решений, принимаемых  очень многими людьми. В свою очередь, деятельность отдельного человека также  влияет на судьбу многих. Именно поэтому  очень важно, чтобы наука о  жизни стала неотъемлемой частью мировоззрения каждого человека независимо от его специальности. Инженеру- строителю, инженеру- технологу, инженеру- мелиоратору знание биологии необходимо так же, как врачу или агроному, ибо только в этом случае они будут  представлять последствия своей  производственной деятельности для  природы и человека. Необходимы биологические  знания и представителям гуманитарных специальностей как важная часть  общечеловеческого культурного  наследия. Действительно, во все века вокруг знаний о живой природе  шли споры философов и богословов, ученых и шарлатанов. Представления  о сущности жизни послужили основой  многих мировоззренческих концепций.

Биология- наука о живой природе, предметом  которой являются познание сущности, происхождения, развития и многообразия жизни и изыскание наиболее рациональных методов охраны и преобразования живой природы в соответствии с потребностями человека. Ее название возникло из сочетания двух греческих  слов: bios (жизнь) и logos (слово, учение). Биология изучает строение, проявления жизнедеятельности, среду обитания всех живых организмов: бактерий, грибов, растений, животных, человека.

Живое на Земле представлено необычайным  разнообразием форм, множеством видов  живых существ. В настоящее время  уже известно около 350 тыс. видов  растений, более 1,5 млн. видов животных, большое количество видов грибов и прокариот, населяющих нашу планету. Ученые постоянно обнаруживают и  описывают новые виды, как существующие в современных условиях, так и  вымершие в минувшие геологические  эпохи.

Раскрытие общих свойств живых организмов и объяснение причин их многообразия, выявление связей между строением  и условиями окружающей среды  относятся к основным задачам  биологии. Важное место в этой науке  занимают вопросы возникновения  и законы развития жизни на Земле - эволюционное учение. Понимание этих законов является основой научного мировоззрения и необходимо для  решения практических задач.

Биология  использует самые различные методы. Один из важнейших - исторический, служащий основой осмысления получаемых факторов.

Возникновение жизни и функционирование живых  организмов обусловлены естественными  законами. Познание этих законов позволяет  не только составить точную картину  мира, но и использовать их для практических целей.

Достижения  биологии последнего времени привели  к возникновению принципиально  новых направлений в науке, ставших  самостоятельными разделами в комплексе  биологических дисциплин. С помощью  ее методов создают организмы  с новыми, в том числе и с  не встречающимися в природе, комбинациями наследственных признаков и свойств. Практическое применение достижений современной  биологии уже в настоящее время  позволяет получать промышленным путем  значительные количества биологически активных веществ.

На  основе изучения взаимоотношений между  организмами созданы биологические  методы борьбы с вредителями сельскохозяйственных культур, многие приспособления живых  организмов послужили моделями для  конструирования эффективных искусственных  сооружений и механизмов. В то же время незнание или игнорирование  законов биологии приводит к тяжелым  последствиям, как для природы, так  и для человека. Настало время, когда от поведения каждого из нас зависит сохранность окружающего мира.

Исключительная  способность живой природы к  восстановлению создала иллюзию  ее неуязвимости к разрушительным воздействиям человека, безграничности ее ресурсов. Теперь мы знаем, что это не так. Поэтому  хозяйственная деятельность человека должна строиться с учетом принципов  организации биосферы.

Знание  биологии для человека огромно. Общебиологические  закономерности используют при решении  самых разных вопросов во многих отраслях народного хозяйства. Благодаря  знанию законов наследственности и  изменчивости достигнуты большие успехи в сельском хозяйстве при создании новых высокопродуктивных пород  домашних животных и сортов культурных растений. Кроме того, использование  в промышленности (в строительстве, при создании новых машин и  механизмов) принципов организации  живых существ (бионика) приносит в  настоящее время и даст в будущем  значительный экономический эффект.

В дальнейшем практическое значение биологии еще больше возрастет. Это связано  с быстрыми темпами роста населения  планеты, а также с постоянно  возрастающей численностью городского населения, непосредственно не участвующего в сельскохозяйственном производстве. В такой ситуации основой увеличения пищевых ресурсов может быть лишь интенсификация сельского хозяйства. Важную роль в этом процессе будет  играть выведение новых высокопродуктивных форм микроорганизмов, растений и животных, рациональное, научно обоснованное использование  природных богатств.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ОСНОВНЫЕ  ОРГАНИЧЕСКИЕ ВЕЩЕСТВА, ВХОДЯЩИЕ В  СОСТАВ КЛЕТКИ

 

Органические  вещества, входящие в состав клетки. Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры — белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул - гормонов, пигментов, АТФ и многие другие. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы — полисахариды; в животных — больше белков и жиров. Тем не менее каждая из групп органических веществ в любом типе клеток выполняет сходные функции. Белки. Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У животных на них приходится около 50 % сухой массы клетки. В организме человека встречается 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. 
Несмотря на такое разнообразие и сложность строения, они построены всего из 20 различных аминокислот. Белки, выделенные из живых организмов — животных, растений и микроорганизмов,— включают несколько сотен, а иногда и тысяч комбинаций 20 основных аминокислот. Порядок их чередования самый разнообразный, что делает возможным существование огромного числа молекул белка, отличающихся друг от друга. Например, для белка, состоящего всего из 20 остатков аминокислот, теоретически возможно около 2 • 1018 вариантов, отличающихся чередованием аминокислот, а значит, и свойствами различных белковых молекул. Последовательность аминокислот в полипептидной цепи принято называть первичной структурой белка. Однако молекула белка в виде цепи аминокислот, последовательно соединенных между собой пептидными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот белковая молекула принимает вид спирали. Это вторичная структура белка. Но и ее часто недостаточно для приобретения характерной активности. Только молекула, обладающая третичной структурой, может выполнять роль катализатора или любую другую. Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или 5-3 связи. Благодаря этим взаимодействиям, а также другим менее сильным связям белковая спираль сворачивается и приобретает форму шарика, или глобулы. Способ укладки полипептидных спиралей в глобулы называют третичной структурой белка. Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке. Однако для некоторых функций организма требуется участие белков с еще более высоким уровнем организации. Такая организация называется четвертичной структурой. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка с третичной организацией. Пример такого сложного белка — гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Утрата белковой молекулой своей структурной организации называется денатурацией. Денатурация может быть вызвана изменением температуры, обезвоживанием, облучением рентгеновскими лучами и другими воздействиями. Вначале разрушается самая слабая структура— четвертичная, затем третичная, вторичная и при наиболее жестких условиях — первичная. Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается и структура белка. Такой процесс носит название ренатурации. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например антибиотиков, для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства. Функции белков в клетке чрезвычайно многообразны. Одна из важнейших — строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур. Исключительно важное значение имеет каталитическая роль белков. Все ферменты — вещества белковой природы, они ускоряют химические реакции, протекающие в клетке в десятки и сотни тысяч раз. Двигательная функция живых организмов обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и др.Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. 
При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах — лейкоцитах — образуются особые белки — антитела. Они связывают и обезвреживают не свойственные организму вещества — это защитная функция. 
Белки служат и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии. 
Углеводы. Углеводы, или сахариды,— органические вещества. У большинства углеводов число атомов водорода вдвое превышает количество атомов кислорода. Поэтому эти вещества и были названы углеводами. В животной клетке углеводы находятся в количествах, не превышающих 1—2, иногда 5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (клубни картофеля, семена и т. д.).Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углерода в молекуле моносахариды называю триозами — 3 атома, тетрозами — 4, пентозами — 5 и гексозами — 6 атомов углерода. Из шестиуглеродных моносахаридов — гексоз наиболее важны глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1—0,12 %). Пентозы — рибоза и дезоксирибоза — входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар — из глюкозы и галактозы. 
Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток; сложный полисахарид хитин — главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается 17,6 кДж. Крахмал у растений и гликоген у животных, откладываясь в клетках, служат энергетическим резервом. Жиры и липоиды. Жиры (липиды) представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде — они гидро-фобны. В клетках всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. 
Одна из основных функций жиров — энергетическая. В ходе расщепления 1 г жиров освобождается большое количество энергии — 38,9 кДж. Содержание жира в клетке колеблется в пределах 5—15 % от массы сухого вещества. В клетках жировой ткани количество жира возрастает до 90 %. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии. 
Жиры и липоиды выполняют и строительную функцию, они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен выполнять функцию теплоизолятора. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов. Нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот — важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность. Изучение структуры нуклеиновых кислот, которую впервые установили американский биолог Уотсон и английский физик Крик, имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования как отдельных клеток, так и клеточных систем — тканей и органов. 
Существуют два типа нуклеиновых кислот: ДНК и РНК. ДНК (дезоксирибонуклеиновая кислота) — биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие азотистые основания — аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу — дезоксирибозу по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются между собой образуя кобалетные связи между дезокарибозой одного нуклеотида и остатком фосфорной кислоты другого. Нуклеотиды могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с азотистым основанием Т противоположной по-линуклеотидной цепочки, а Г тремя водородными связями с Ц. Такая способность к избирательному соединению нуклеотидов, в результате чего образуются пары А-Т и Г-Ц, называется комплементарностью. РНК (рибонуклеиновая кислота) также, как ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (аденин, гуанин, цитозин), четвертое - ура-цил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода: они включают другую пентозу - рибозу (вместо дезоксирибозы). В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного нуклеотида и остатком фосфорной кислоты другого. РНК переносят информацию о последовательности аминокислот в белках, т. е. о структуре белков от хромосом к месту их синтеза, и участвуют в синтезе белков. Существует несколько видов РНК. Их названия обусловлены выполняемой функцией или местонахождением в клетке. Большую часть РНК цитоплазмы (до 80—90 %) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят из 3—5 тыс. нуклеотидов. Другой вид РНК — информационные (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Молекулы иРНК могут состоять из 300—30000 нуклеотидов. Транспортные Р/-//((тРНК) включают 76—85 нуклеотидов и выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплемен-тарности) триплет иРНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

 

 

 

БЕСПОЛОЕ  РАЗМНОЖЕНИЕ. ПОЛОВОЕ РАЗМНОЖЕНИЕ. РАЗВИТИЕ ПОЛОВЫХ КЛЕТОК — ГАМЕТОГЕНЕЗ

 

Бесполое  размножение, или агамогенез — форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Следует отличать бесполое размножение от однополого размножения (партеногенеза), который является особой формой полового размножения.

Размножение делением. Деление свойственно прежде всего одноклеточным организмам. Как правило, оно осуществляется путём простого деления клетки надвое. У некоторых простейших (например, фораминифер) происходит деление на большее число клеток. Во всех случаях образующиеся клетки полностью идентичны исходной. Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30—60 минут. Размножающийся бесполым путём организм способен бесконечно воспроизводить себя, пока не произойдёт спонтанное изменение генетического материала — мутация. Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.В однополом размножении участвует один родительский организм, который способен образовать множество идентичных ему организмов.

Размножение спорами. Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры — это покоящиеся клетки со сниженным метаболизмом, окружённые многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток. Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную (делящуюся) клетку.

Бесполое размножение  с помощью одноклеточных спор свойственно и различным грибам и водорослям. Споры во многих случаях образуются путём митоза (митоспоры), причём иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм. Некоторые грибы, например злостный вредитель растений фитофтора, образуют подвижные, снабжённые жгутиками споры, называемые зооспорами или бродяжками. Проплавав в капельках влаги некоторое время, такая бродяжка «успокаивается», теряет жгутики, покрывается плотной оболочкой и затем, в благоприятных условиях, прорастает.

Вегетативное  размножение. Другой вариант бесполого размножения осуществляется путём отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм. Примером может служить почкование у губок и кишечнополостных или размножение растений побегами, черенками, луковицами или клубнями. Такая форма бесполого размножения обычно называется вегетативным размножением. В своей основе оно аналогично процессу регенерации.

Вегетативное размножение играет важную роль в практике растениеводства. Так, может случиться, что высеянное растение (например, яблоня) обладает некой удачной комбинацией признаков. У семян данного растения эта удачная комбинация почти наверняка будет нарушена, так как семена образуются в результате полового размножения, а оно связано с рекомбинацией генов. Поэтому при разведении яблонь обычно используют вегетативное размножение — отводками, черенками или прививками почек на другие деревья.

Почкование. Некоторым видам одноклеточных свойственна такая форма бесполого размножения, как почкование. В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки, а затем этот фрагмент отпочковывается. Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму. Почкование — вид вегетативного размножения. Почкованием размножаются многие низшие грибы, например дрожжи и даже многоклеточные животные, например пресноводная гидра. При почковании дрожжей на клетке образуется утолщение, постепенно превращающиеся в полноценную дочернюю клетку дрожжей. На теле гидры несколько клеток начинают делиться, и постепенно на материнской особи вырастает маленькая гидра, у которой образуются рот со щупальцами и кишечная полость, связанная с кишечной полостью «матери».

Половое размножение. Половой процесс. Половое размножение отличается наличием полового процесса, который обеспечивает обмен наследственной информацией и создает условия для возникновения наследственной изменчивости. В нем, как правило, участвуют две особи — женская и мужская, которые образуют гаплоидные женские и мужские половые клетки — гаметы. В результате оплодотворения, т. е. слияния женской и мужской гамет, образуется диплоидная зигота с новой комбинацией наследственных признаков, которая и становится родоначальницей нового организма.

Половое размножение по сравнению с бесполым обеспечивает появление наследственно более  разнообразного потомства. Формами  полового процесса являются конъюгация и копуляция.

Конъюгация — своеобразная форма полового процесса, при которой оплодотворение происходит путем взаимного обмена мигрирующими ядрами, перемещающимися из одной клетки в другую по цитоплазматическому мостику, образуемому двумя особями. При конъюгации обычно не происходит увеличения количества особей, но происходит обмен генетическим материалом между клетками, что обеспечивает перекомбинацию наследственных свойств. Конъюгация типична для ресничных простейших (например, инфузорий), некоторых водорослей (спирогиры).

Информация о работе Структура клетки,теория дарвина