Генетические основы старения

Автор: Пользователь скрыл имя, 08 Ноября 2011 в 01:12, реферат

Описание работы

Биология старения стала одной из центральных проблем современного естествознания. Всё нарастающий интерес исследователей к этой проблеме определяется рядом факторов. Во-первых, крупные достижения биологической науки, в первую очередь раскрытие механизмов передачи генетической информации, биосинтез белка, мембранных механизмов функции клеток, установление общих закономерностей регуляции обмена и функции организма, сделали реальной возможность познания ведущих механизмов старения.

Содержание

Введение. - 3 -
Общие закономерности развития старения. - 3 -
Общие признаки и физиология старения. - 4 -
Причины старения. - 7 -
Теории старения. - 9 -
Заключение. - 10 -
Список использованной литературы. - 11 -

Работа содержит 1 файл

Генетические основы старения.docx

— 53.04 Кб (Скачать)

    Важная  составляющая механизма обновления — стволовые клетки. Эти клетки, которые обычно продолжают свободно делиться на протяжении всей жизни, в условиях увеличенного спроса переходят в фазу быстрой пролиферации. Кроветворная ткань содержит популяцию стволовых клеток, которая быстро отвечает на повреждения в молодости, но её активность уменьшается с возрастом. Учащение случаев анемии в старости и замедление ответа на потерю крови обычно поясняют истощением стволовых клеток кроветворных органов.

    Морфология тканей. Значительные изменения происходят с возрастом и в морфологии тканей. Например, обычна небольшая степень атрофии тканей. Наиболее заметно сокращение размера тимуса, особенно учитывая его роль в имунной защите. Постепенное уменьшение объёма клеточной ткани и её замена жировой или соединительной тканью самое значительное — в костном мозге и коже. В почках утрачиваются целые секреторные структуры (нефроны). Секреторные клетки поджелудочной железы, щитовидной железы и некоторых других органов также уменьшаются в количестве.

    Важное  изменение во время старения — накопление пигментов и инертных и, возможно, вредных материалов между клетками. Пигмент липофусцин накапливается в границах клеток сердечной мышцы — обычно он отсутствует до 10 лет после рождения человека, но его количество увеличивается почти до 3 процентов объёма клеток в 90-летнем возрасте. Небольшие количества металлов также накапливаются в разных тканях с возрастом, и хотя эти количества невелики, некоторые металлы могут вызвать отравление ферментативных систем, стимулировать мутации или вызвать рак.

    Изменения отдельных систем организма.

    Кровеносная система. Изменения в кровеносной системе зависят от вида млекопитающих, но очень сильно проявляются у человека. Главными физиологическими изменениями кровеносной системы является атрофия сердечной мышцы, особенно левого желудочка, кальцификация сердечных клапанов, потеря эластичности сосудов и отложения инертных материалов в сосудах (атеросклероз). Последствиями этого являются снижение кровотока и замедление ответа на временные изменения в потребности крови, что приводит к снижению поступления кислорода, снижению активности почек и печени и общее снижение поступления питательных веществ в клетки тела.

    Нервная система. Потеря психологических и нейрофизиологических возможностей с возрастом — вне сомнений, в значительной мере результат потери нейронов, но в этот процесс вовлечены и изменения в метаболических процессах живых клеток. Способность глаза к адаптации к темноте уменьшается с возрастом, но часть этого уменьшения может быть восстановлена при вдыхании чистого кислорода. Известно, что умственные способности пожилых людей также улучшаются с помощью вдыхания кислорода. Установление нервных связей, ассоциированное с памятью, требует синтеза белков, таким образом снижение белкового синтеза за счёт снижения потребления кислорода с возрастом может быть важным фактором ослабления памяти и способностей к обучению пожилых людей.

    Эндокринная система. Общей характеристикой старения эндокринной системы является уменьшение чувствительности клеток, которые отвечают на действия гормонов. Тем не менее, пока ещё неизвестно, какие именно процессы отвечают за это снижение чувствительности. В результате этих изменений резервы организма, чувствительность к изменениям окружающей среды, стрессу и токсичности химических веществ снижаются.

    Скелет.  В старости кости постепенно теряют кальций и становятся менее крепкими. Это может привести к остеопорозу, увеличивая вероятность переломов. Утоньшение позвонков также приводит к сокращению высоты тела. Кроме того, позвонки отвердевают, что приводит к увеличению жёсткости всего позвоночника и потере манёвренности.

    Причины старения.

    История исследования. Первые попытки научного объяснения старения начались в конце XIX века. В одной из первых работ Вейсман предложил теорию происхождения старения как свойства, которое возникло в результате эволюции. Согласно Вейсману, «стареющие организмы не только не являются полезными, они вредны, потому что занимают место молодых», что, согласно Вейсману, должно было привести эволюцию к возникновению старения.

    Важным  шагом в исследовании старения был  доклад профессора Питера Медавара перед Лондонским королевским обществом в 1951 году под названием «Нерешённая проблема биологии». В этой лекции он подчеркнул, что животные в природе редко доживают до возраста, когда старение становится заметным, таким образом эволюция не могла оказывать влияние на процесс развития старения. Эта работа положила начало целой серии новых исследований.

    На  протяжении следующих 25 лет исследования имели преимущественно описательный характер. Тем не менее, начиная с  конца 70-х годов, возникает большое  количество теорий, которые пытались объяснить старение. Но только в  конце 1990-х годов ситуация начала проясняться, и большинство авторов начали приходить к общим выводам.

    Все теории старения можно условно разделить  на две большие группы: эволюционные теории и теории, основанные на случайных  повреждениях клеток. Первые считают, что старение является не необходимым  свойством живых организмов, а  запрограммированным процессом. Согласно им, старение развилось в результате эволюции из-за некоторых преимуществ, которые оно даёт целой популяции. В отличие от них, теории повреждения предполагают, что старение является результатом природного процесса накопления повреждений со временем, с которыми организм старается бороться, а различия старения у разных организмов является результатом разной эффективности этой борьбы. Сейчас последний подход считается установленным в биологии старения2. Тем не менее, некоторые исследователи всё еще защищают эволюционный подход, а некоторые другие совсем игнорируют деление на эволюционные теории и теории повреждений.

    Эволюционно-генетический подход. Гипотеза, которая легла в основу генетического подхода, была предложена Питером Медаваром в 1952 году и известна сейчас как «теория накопления мутаций». Медавар заметил, что животные в природе очень редко доживают до возраста, когда старение становится заметным. Согласно его идее, аллели, которые проявляются на протяжении поздних периодов жизни и которые возникают в результате мутаций зародышевых клеток, подвергаются довольно слабому эволюционному давлению, даже если в результате их действия страдают такие свойства, как выживание и размножение. Таким образом, эти мутации могут накапливаться в геноме на протяжении многих поколений. Тем не менее, любая особь, которая сумела избежать смерти на протяжении долгого времени, испытывает на себе их действие, что проявляется как старение. То же самое верно и для животных в защищённых условиях.

    В дальнейшем, в 1957 году Д. Вильямс предположил существование плейотропных генов, которые имеют разный эффект для выживания организмов на протяжении разных периодов жизни, то есть они полезны в молодом возрасте, когда эффект естественного отбора сильный, но вредны позднее, когда эффект естественного отбора слабый. Эта идея сейчас известна как «антагонистическая плейотропия».

    Вместе  эти две теории составляют основу современных представлений о  генетике старения3. Тем не менее, идентификация ответственных генов имела лишь ограниченный успех. Свидетельства о накоплении мутаций остаются спорными, тогда как свидетельства наличия плейотропных генов сильнее, но и они недостаточно обоснованы. Примерами плейотропных генов можно назвать ген теломеразы у эукариотов и сигма-фактор σ70 у бактерий. Хотя известно много генов, которые влияют на продолжительность жизни разных организмов, других чётких примеров плейотропных генов всё ещё не обнаружено.

    Эволюционно-физиологический подход. Теория антагонистической плейотропии предсказывает, что должны сушествовать гены с плейотропным эффектом, естественный отбор которых и приводит к возникновению старения. Несколько генов с плейотропным эффектом на разных стадиях жизни действительно найдены - сигма-70 у бактерий, теломераза у эукариотов, но непосредственной связи со старением показано не было, тем более не было показано, что это типичное явление для всех организмов, ответственное за все эффекты старения. То есть эти гены могут рассматриваться лишь как кандидаты на роль генов, предсказанных теорией. С другой стороны, ряд физиологических эффектов проявляются без определения генов, ответственных за них. Часто мы можем говорить о компромиссах, аналогичных предсказанным теорией антагонистической плейотропии, без чёткого определения генов, от которых они зависят. Физиологическая основа таких компромиссов заложена в так называемой «теории одноразовой сомы»4. Эта теория задаётся вопросом, как организм должен распорядиться своими ресурсами между поддержкой и ремонтом сомы и другими функциями, необходимыми для выживания. Необходимость компромисса возникает из-за ограниченности ресурсов или необходимости выбора лучшего пути их использования.

    Поддержание тела должна осуществляться только настолько, насколько это необходимо на протяжении обычного времени выживания в  природе. Например, поскольку 90 % диких мышей умирает на протяжении первого года жизни, преимущественно от холода, инвестиции ресурсов в выживание на протяжении дольшего времени будут касаться только 10 % популяции. Таким образом, трёхлетняя продолжительность жизни мышей полностью достаточна для всех потребностей в природе, а с точки зрения эволюции, ресурсы следует тратить, например, на улучшение сохранения тепла или размножения, вместо борьбы со старостью. Таким образом, продолжительность жизни мыши наилучшим образом отвечает экологическим условиям её жизни.

    Теория  «одноразового тела» делает несколько  допущений, которые касаются физиологи  процесса старения. Согласно этой теории, старение возникает в результате неидеальных функций ремонта  и поддержки соматических клеток, которые адаптированы для удовлетворения экологических потребностей.

    Теории  старения.

    Молекулярные механизмы. Существуют свидетельства нескольких важнейших механизмов повреждения макромолекул, которые обычно действуют параллельно один другому или зависят один от другого. Вероятно, любой из этих механизмов может играть доминирующую роль при определённых обстоятельствах. Во многих из этих процессов важную роль играют активные формы кислорода (в частности свободные радикалы), набор свидетельств об их влиянии был получен достаточно давно и сейчас известен под названием «свободно-радикальная теория старения». Сегодня, тем не менее, механизмы старения намного более детализированы.

    Теория соматических мутаций. Многие работы показали увеличение с возрастом числа соматических мутаций и других форм повреждения ДНК, предлагая репарацию ДНК в качестве важного фактора поддержки долголетия клеток. Повреждения ДНК типичны для клеток, и вызываются такими факторами как жёсткая радиация и активные формы кислорода, и потому целостность ДНК может поддерживаться только за счёт механизмов репарации. Действительно, существует зависимость между долголетием и репарацией ДНК, как это было продемонстрировано на примере фермента поли-АДФ-рибоза-полимеразы-1 (PARP-1), важного игрока в клеточном ответе на вызванное стрессом повреждение ДНК. Более высокие уровни PARP-1 ассоциируются с большей продолжительностью жизни.

    Накопление изменённых белков. Также важен для выживания клеток кругооборот белков, для которого критично появление повреждённых и лишних белков. Окисленные белки являются типичным результатом влияния активных форм кислорода, которые образуются в результате многих метаболических процессов клетки и часто мешают корректной работе белка. Тем не менее, механизмы репарации не всегда могут распознать повреждённые белки и становятся менее эффективными с возрастом за счёт снижения активности протеосомы. В некоторых случаях белки являются частью статических структур, таких как клеточная стенка, которые не могут быть легко разрушены. Кругооборот белков зависит также и от белков-шаперонов, которые помогают белкам получать необходимую конформацию. С возрастом наблюдается снижение репарирующей активности, хотя это снижение может быть результатом перегрузки шаперонов повреждёнными белками.

Информация о работе Генетические основы старения