Строение и морфофункциональная классификация нейронов

Автор: Пользователь скрыл имя, 27 Марта 2011 в 18:01, реферат

Описание работы

Нервы – скопления длинных отростков нервных клеток, покрытых оболочкой. Нервы, состоящие из аксонов двигательных нейронов, называются двигательными нервами. Чувствительные нервы состоят из дендритов чувствительных нейронов. Большинство нервов содержат и аксоны и детриты. Такие нервы называют смешанными. По ним импульсы идут по двум направлениям – к центральной нервной системе и от нее к органам.

Работа содержит 1 файл

анатомия ЦНС НЕЙРОНЫ.doc

— 524.50 Кб (Скачать)

       Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они представляют разновидности веретенообразных, звездчатых, корзинчатых и пирамидных клеток.

       Обмен веществ в нейроне. Необходимые питательные вещества и соли доставляются в нервную клетку в виде водных растворов. Продукты метаболизма также удаляются из нейрона в виде водных растворов.

       Белки нейронов служат для пластических и информационных целей. В ядре нейрона содержится ДНК, в цитоплазме преобладает РНК. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых структурах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше — в мозжечке, наименьшая — в спинном мозге.

       Липиды нейронов служат энергетическим и пластическим материалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление, достигающее у некоторых нейронов 1000 Ом/см2 поверхности. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается.

       Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит глюкоза крови.

       Глюкоза расщепляется в нейроне аэробным и анаэробным путем. Расщепление идет преимущественно аэробным путем, этим объясняется высокая чувствительность нервных клеток к недостатку кислорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. При нар козе потребление углеводов снижается.

        В нервной ткани содержатся соли калия, натрия, кальция, магния и др. Среди катионов преобладают К+, Na+, Mg2+, Са2+; из анионов — Сl-, НСОз. Кроме того, в нейроне имеются различные микроэлементы (например, медь и марганец). Благодаря высокой биологической активности они активируют ферменты. Количество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди, марганца в нейроне резко снижается.

       Обмен энергии в нейроне в состоянии покоя и возбуждения различен. Об этом свидетельствует значение дыхательного коэффициента в клетке. В состоянии покоя он равен 0,8, а при возбуждении — 1,0. При возбуждении потребление кислорода возрастает на 100%. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз.

       Собственные энергетические процессы нейрона (его сомы) тесно связаны с трофическими влияниями нейронов, что сказывается прежде всего на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. 

Классификация нейронов.

        Существует классификация нейронов, учитывающая химическую структуру выделяемых в окончаниях их аксонов веществ: холинергические, пептидергические, норадреналинергические, дофаминергические, серотонинергические и др.

       По чувствительности к действию раздражителей нейроны делят на моно-, би-, полисенсорные.

       Моносенсорные нейроны. Располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на световое раздражение сетчатки глаза.

       Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут реагировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более — полимодальными.

       Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зри тельные и слуховые раздражения.

       Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.

       Нервные клетки разных отделов нервной системы могут быть активными вне воздействия — фоновые, или фоновоактивные. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение.

       Фоновоактивные нейроны делятся на тормозящиеся — урежающие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные нейроны могут генерировать импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов — это первый тип активности — непрерывно-аритмичный. Такие нейроны обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

       Нейроны второго типа выдают группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка, импульсов. Этот тип активности называется пачечным. Значение пачечного типа активности заключается в создании условий проведения сигналов при снижении функциональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке равны приблизительно 1— 3 мс, между пачками этот интервал составляет 15—120 мс.

       Третья форма фоновой активности — групповая. Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

       Функционально нейроны можно также разделить на три типа: афферентные, интернейроны (вставочные), эфферентные. Первые выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые — обеспечивают взаимодействие между нейронами ЦНС, третьи — передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за пределами ЦНС, и в органы организма.

       Функции афферентных нейронов тесно связаны с функциями рецепторов. 

Рецепторы. Рецепторный и  генераторный потенциалы.

       Рецепторы представляют собой специализированные образования, воспринимающие определенные виды раздражений.

       Рецепторы обладают наибольшей чувствительностью к адекватным для них раздражениям. Рецепторы делят на четыре группы: механо-, термо-, хемо- и фоторецепторы. Каждую группу подразделяют на более узкие диапазоны рецепции. Например, зрительные рецепторы делятся на воспринимающие освещенность, цвет, слуховые — определенный тон, вкусовые — определенные вкусовые раздражения (соленое, сладкое, горькое) и т. д.

       Рецепторный потенциал возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным. Рецептивный участок мембраны имеет специфические свойства, в том числе биохимические, отличающие его от мембраны тела и аксона.

       Возникший в рецептивных участках мембраны рецепторный потенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал. Возникновение генераторного потенциала в области аксонного холмика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.

        Рецепторные нейроны различаются по скорости уменьшения их реакции (адаптации) на длящуюся стимуляцию. Рецепторные нейроны, медленно адаптирующиеся к раздражению, т. е. длительное время генерирующие потенциалы действия, называются тоническими. Рецепторы, быстро и коротко реагирующие на стимуляцию группой импульсов, называются физическими.

       Таким образом, реакция рецепторного нейрона, предназначенного для передачи информации из области восприятия, имеет 5 стадий: 1) преобразование сигнала внешнего раздражения; 2) генерация рецепторного потенциала; 3) распространение рецепторного потенциала по нейрону; 4) возникновение генераторного потенциала; 5) генерация нервного импульса. 

Афферентные нейроны, их функции.

       Афферентные нейроны — нейроны, воспринимающие информацию. Как правило, афферентные нейроны имеют большую разветвленную сеть. Это характерно для всех уровней ЦНС. В зад них рогах спинного мозга афферентными являются чувствительные нейроны малых размеров с большим числом дендритных отростков, в то время как в передних рогах спинного мозга эфферентные нейроны имеют тело большого размера, более грубые, менее ветвящиеся отростки. Эти различия нарастают по мере изменения уровня ЦНС к продолговатому, среднему, промежуточному, конечному мозгу. Наибольшие различия афферентных и эфферентных нейронов отмечаются в коре большого мозга. 

Вставочные  нейроны, их роль в  формировании нейронных  сетей.

Вставочные  нейроны, или интернейроны, обрабатывают информацию, получаемую от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны.

       Область влияния вставочных нейронов определяется их собственным строением (длина аксона, число коллатералей аксонов). Вставочные нейроны, как правило, имеют аксоны, терминали которых заканчиваются на нейронах своего же центра, обеспечивая прежде всего их интеграцию. Одни вставочные нейроны получают активацию от нейронов других центров и затем распространяют эту информацию на нейроны своего центра. Это обеспечивает усиление влияния сигнала за счет его повторения в параллельных путях и удлиняет время сохранения информации в центре. В итоге центр, куда пришел сигнал, повышает надежность воздействия на исполнительную структуру.

       Другие вставочные нейроны получают активацию от коллатералей эфферентных нейронов своего же центра и затем передают эту информацию назад в свой же центр, образуя обратные связи. Так организуются реверберирующие сети, позволяющие длительно сохранять информацию в нервном центре.

        Вставочные нейроны могут быть возбуждающими или тормозными.

       Активация возбуждающих вставочных нейронов в новой коре облегчает передачу информации с одной группы нейронов в другую. Причем это происходит за счет «медленных» пирамидных нейронов, способных к длительной тонической активации и поэтому передающих сигналы достаточно медленно и длительно. Одновременно эти же вставочные нейроны своими коллатералями активируют и «быстрые» пирамидные нейроны, которые разряжаются физически-коротким залпом. Усиление активности «медленных» нейронов усиливает реакцию «быстрых», в то же время «быстрые» нейроны тормозят работу «медленных».

       Тормозные вставочные нейроны возбуждаются прямыми сигналами, идущими в их собственный центр, или сигналами, идущими из того же центра, но по обратным связям. Прямое возбуждение тормозящих вставочных нейронов характерно для промежуточных центров афферентных спиноцеребральных путей.

       Для двигательных центров коры и спинного мозга характерно возбуждение вставочных нейронов за счет обратных связей.

Эфферентные нейроны.

       Эфферентные нейроны нервной системы — это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эфферентные нейроны двигательной зоны коры большого мозга — пирамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

Информация о работе Строение и морфофункциональная классификация нейронов